
Precision Measurements Using Semiconductor Light

Sources:

Applications in Polarimetry and Spectroscopy

A Thesis Submitted to the Committee on Graduate Studies

in Partial Fulfillment of the Requirements for the Degree of Master of Science

in the Faculty of Arts and Science

TRENT UNIVERSITY

Peterborough, Ontario, Canada

© Copyright by Matthew J. Romerein 2011

Materials Science M.Sc. Program

October 2011



Abstract

Precision Measurements Using Semiconductor Light Sources:

Applications in Polarimetry and Spectroscopy

Matthew J. Romerein

This thesis comprises two parts:

Part I describes a method to improve the accuracy with which the polariza-

tion state of light can be characterized by the rotating quarter-wave plate technique.

Through detailed analysis, verified by experiment, we determine the positions of the

optic axes of the retarder and linear polarizer, and the wave plate retardance, to

better than 1◦ for typical signal-to-noise ratios. Accurate determination of the Stokes

parameters can be achieved using this technique to determine the precise retardance

at each of the wavelengths of interest.

In Part II, a theoretical analysis of the Fabry-Perot interferometer and its appli-

cation to quantitative absorption spectroscopy is presented. Specifically the effects of

broadening due to non-monochromatic light sources and examples of non-ideal etalon

surfaces on the visibility of absorption features are investigated. The potential of this

type of spectrometer for ethanol detection in a portable breath analysis application

is discussed.
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Chapter 1

Introduction

Semiconductor light sources have had a rich history of applications since the advent of

the p-n junction [1] owing to their versatility, compact size and high efficiency. Light-

emitting diodes (LEDs) have come into widespread use as environmentally friendly

sources of incoherent light due to their low power consumption and long operating

life, and offer an enormous range of peak wavelengths and bandwidths. In the sim-

plest type of LED the active region is the interface between n- and p-doped layers

of a semiconductor material such as GaAs, where n-doped and p-doped refer to ex-

tra electrons/holes in the valence/conduction band, respectively. This type of diode,

known as a homojunction, produces light via radiative recombination – when excess

electrons and holes recombine across the active layer and emit photons under forward

biasing. Another type, the heterojunction, comprises an active layer of one semicon-

ductor material (e.g., GaAs) sandwiched between n- and p-layers of a larger bandgap

material such as AlGaAs. The mobile charges from forward biasing are confined to

the active layer by the larger bandgap cladding layers, which increases the proba-

bility for recombination. Further, the difference in refractive index between the two

1



CHAPTER 1. INTRODUCTION 2

materials confines the emitted light to the active area where subsequent absorption

is less likely. These advantages improve the efficiency of the active layer and cleav-

ing and polishing opposite sides of the heterojunction results in a cavity with highly

reflective end-facets that support lasing. Other choices of semiconductor materials

with different bandgaps and different active layer geometries offer a wide range of

lasing wavelengths throughout the visible and infrared spectrum [2]. Due to this phe-

nomenal flexibility and their capacity for extremely cost-effective mass production,

laser diodes have been in widespread use in bar-code scanners, DVD players and laser

pointers for decades and their range of applications continues to grow to this day.

The purpose of this thesis is to investigate two applications in measurement within

optical physics that involve semiconductor light sources in our laboratory. Part I

involves measuring the polarization state of InGaAsP laser beams and refining a

well-known measurement technique to increase the precision of such measurements.

Part II involves a theoretical investigation of Fabry-Perot elatons illuminated by

narrow-band light sources such as LEDs with subsequent application to quantitative

absorption spectroscopy. A particular example involving ethanol and water vapour

spectra is chosen to illustrate the proposed technique.



Chapter 2

Literature review – Precision

polarimetry

The rotating quarter-wave plate method is a well-known technique for characterizing

the polarization state of light [3]. In this convenient and widely-used method the

intensity of light transmitted through a quarter-wave plate and linear polarizer is

recorded at a number of azimuthal angles of the retarder’s fast-axis from a fixed

reference axis. The measured intensities depend on these angles, which we denote

{βi}, the precise retardance of the wave plate, ∆ (π/2 for an ideal quarter-wave plate),

and the angle, γ, of the linear polarizer transmission axis from the same fixed reference

axis. Accurate determination of the polarization state of incident light, which is often

described by the Stokes parameters, therefore requires precise knowledge of {βi}, ∆

and γ.

Much of the content in this chapter has been published in: M. J. Romerein, J. N. Philippson, R.
L. Brooks, and R. C. Shiell, “Calibration method using a single retarder to simultaneously measure
polarization and fully characterize a polarimeter over a broad range of wavelengths,” Appl. Opt. 50,
5382–5389 (2011), and is reproduced here by permission of the Optical Society.

3
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In practice these values are not always known within the desired level of uncer-

tainty [4]. For the first data point (i = 1), the retarder’s fast axis is typically intended

to be aligned with the reference axis. However, precise azimuthal positioning of the

often unlabeled optic axes of the retarder and linear polarizer to within ∼1◦ is chal-

lenging, leading to an offset, β0, in all βi and also causing uncertainty in the value

of γ. Further, error in the value of ∆ can derive from using a quarter-wave plate at

wavelengths away from its design wavelength, λnom
π/2 , or from manufacturing tolerances

which are typically ±0.01λnom
π/2 for a zero-order quarter-wave plate [5], or from a slight

tilt of the retarder from normal incidence [6]. To give one example of the signifi-

cance of this, an offset of +3◦ in the retarder alignment and +1% in the retardance

introduces a 13% error in the Stokes parameter S1 for horizontally polarized light for

which S1 should take a maximum value.

A reliable approach to calibration is therefore necessary for accurate character-

ization of polarization using this method. Dlugunovich et al. [7] have suggested a

method for determining coincidence of the positions of the optic axes and calculating

the retardance from the calculated Fourier coefficients. However, determination of co-

incidence would require a laborious trial-and-error process and once coincidence was

achieved, the absolute position of the optic axes relative to the reference axis would

still not be precisely known. Furthermore, accurate calculation of the retardance de-

rived from the Fourier coefficients requires that both optic axes be precisely aligned

with the horizontal reference axis initially when recording the calibration data, which

would be approximate at best when using this method.

The calibration technique developed here expands upon one developed by Brooks

(RLB) [8, 9]. This technique employed a two-step calibration process using linearly
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polarized incident light. In the first step, using an assumed value for ∆, the angle of

the linear polarizer transmission axis from x̂, which will henceforth be called ‘hori-

zontal’, and the offset of the retarder fast axis were determined self-consistently from

four sets of measurements corresponding to each of the two optics oriented either

forward or reversed by rotating about a vertical axis. Because a reversal of an optic

element has no effect if an optic axis is aligned either horizontally or vertically for an

ideal wave plate, then provided β0 and γ are correct, the Stokes parameters calculated

for each of the four cases will be consistent. Subsequently, ∆ was determined with

a second self-consistent technique requiring an additional two sets of measurements

with vertically polarized incident light and the transmission axis of the linear po-

larizer in the polarimeter aligned and then crossed with respect to this polarization.

To improve the accuracy of all the determined parameters, β0, ∆ and γ, the entire

process could be repeated iteratively to convergence.

The calibration method described in Chapter 3 accomplishes for the first time

all this in a single set of measurements and also takes into account the deleterious

effect of a misalignment between the assumed-vertical rotation axes of the retarder

and polarizer, denoted by φ, which can occur due to experimental uncertainties.

While developing this calibration method, it was found that a small value of φ can

introduce errors into the calibration and subsequently into the Stokes parameters if

it is not accounted for. To demonstrate the success of the method, a set of highly

consistent Stokes parameters and calibration parameters for an incident laser beam

using within the polarimeter a set of quarter-wave plates that differ in λnom
π/2 by as

much as 116 nm and for three distinct intentional experimental misalignments, {φnom}

are presented. Using this calibration method, one quarter-wave plate could therefore
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in principle encompass measurements across the whole visible spectrum. Moreover,

this calibration method does not require prior knowledge of any of β0, ∆, γ or φ.



Chapter 3

Precision measurement of

polarization

Waves are arguably one of the most ubiquitous phenomena in nature. Broadly speak-

ing, they constitute some kind of disturbance that propagates in a medium and can

be separated into two categories: longitudinal waves, with the direction of the dis-

turbance being parallel to the direction in which the wave propagates and transverse

waves, with the direction of the disturbance being in the plane perpendicular to the

propagation direction. Polarization refers to the orientation of the disturbance or

displacement in this plane as the transverse wave propagates.

Light is the term usually given to electromagnetic radiation to which the human

eye is sensitive and consists of electromagnetic waves that propagate in a vacuum at

the speed of light, c, where c ≡ 299 792 458 m s−1. In free space, electromagnetic waves

Much of the content in this chapter has been published in: M. J. Romerein, J. N. Philippson, R.
L. Brooks, and R. C. Shiell, “Calibration method using a single retarder to simultaneously measure
polarization and fully characterize a polarimeter over a broad range of wavelengths,” Appl. Opt. 50,
5382–5389 (2011), and is reproduced here by permission of the Optical Society.

7
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can be represented by transverse plane waves that describe the oscillating electric and

magnetic fields of which they are comprised. For a single beam, Maxwell’s equations

dictate that the magnetic field, often described by its complex vector B̃, oscillates

orthogonal to, and in phase with, the electric field, Ẽ, satisfying:

B̃ =
k× Ẽ

ω
, (3.1)

where k is the wavevector in the direction of propagation and ω is the frequency of

oscillation. A beam of light traveling in the ẑ direction has electric field components

Ẽx(t) and Ẽy(t) oscillating sinusoidally in the xy-plane. The relative amplitudes of

these oscillations, each denoted by E0x and E0y, and the behaviour of the phase

difference between them, δ, characterize the polarization of the beam of light.

3.1 Stokes parameters

The polarization state of light cannot be determined as a result of a single intensity

measurement. However, using a series of measurements of the light intensity trans-

mitted through a sequence of polarization-changing optics, the polarization state of

the incident light can be determined. The four Stokes parameters (S0, S1, S2, S3),

defined in terms of the x and y components of the complex electric field vector, are

commonly used to characterize the polarization of fully-, partially- or un-polarized

light travelling along the z-direction. Using the convention that x lies in the hori-

zontal plane and 〈 . . . 〉 denotes a time average, the Stokes parameters are defined as
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follows:

S0 ∝ 〈|Ẽx|2〉+ 〈|Ẽy|2〉 = E2
0x + E2

0y (3.2)

S1 ∝ 〈|Ẽx|2〉 − 〈|Ẽy|2〉 = E2
0x − E2

0y (3.3)

S2 ∝ Re〈ẼxẼy〉 = 2E0xE0y cos δ (3.4)

S3 ∝ Im〈ẼxẼy〉 = 2E0xE0y sin δ. (3.5)

where S0 is the intensity of the light, S1 is the excess of horizontal over vertical

linearly-polarized light, S2 is the excess of +45◦ over −45◦ linearly-polarized light,

and S4 is the excess of right over left circularly-polarized light. In general,

S2
0 ≥ S2

1 + S2
2 + S2

3 , (3.6)

where the equality corresponds to fully-polarized light while S2
1 + S2

2 + S2
3 = 0 corre-

sponds to un-polarized light. The degree of polarization is expressed by the ratio of

the polarized component to the total intensity of the light:

P =

√

S2
1 + S2

2 + S2
3

S0
. (3.7)

A Stokes vector, S, normally represented as a column vector, can be constructed

from the four Stokes parameters. Typically the Stokes vector is normalized such that

S0 = 1, resulting in dimensionless quantities that are independent of the intensity of

the light; such an approach is taken throughout this thesis.
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3.2 Optical element representation

The polarizing effect of any optical element can be represented by a 4 × 4 matrix

following the formalism developed by Mueller [10]. An ideal linear polarizer (i.e. as-

suming negligible absorption) with its transmission axis horizontal can be represented

by the following matrix:

M
pol

=
1

2

























1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

























. (3.8)

The Mueller matrix of an ideal retarder with its fast axis horizontal is given by:

M
ret

=

























1 0 0 0

0 1 0 0

0 0 cos ∆ sin ∆

0 0 − sin ∆ cos ∆

























. (3.9)

where ∆ is the phase shift that it imparts between the components of the electric

field lying parallel to its fast and slow axes, respectively.

If the optic axis is rotated to an angle θ from the horizontal axis, the matrix

representing that optical element must be rotated by θ using the rotation matrix,

R(θ), and its inverse, R−1(θ), as follows [11]:

M(θ) = R−1(θ) M R(θ), (3.10)
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where

R(θ) =

























1 0 0 0

0 cos 2θ sin 2θ 0

0 − sin 2θ cos 2θ 0

0 0 0 1

























(3.11)

and

R−1(θ) =

























1 0 0 0

0 cos 2θ − sin 2θ 0

0 sin 2θ cos 2θ 0

0 0 0 1

























. (3.12)

The Mueller matrices for an ideal linear polarizer with its transmission axis rotated

by γ from horizontal and a retarder with its fast axis rotated by β from horizontal

obtained using Eqs. (3.8) and (3.9) respectively in Eq. (3.10) are:

M
pol

(γ) =
1

2

























1 cos 2γ sin 2γ 0

cos 2γ cos2 2γ 1
2

sin 4γ 0

sin 2γ 1
2

sin 4γ sin2 2γ 0

0 0 0 0

























, (3.13)

M
ret

(β) =

























1 0 0 0

0 cos2 2β + sin2 2β cos ∆ 1
2

sin 4β(1− cos ∆) − sin 2β sin ∆

0 1
2

sin 4β(1− cos ∆) sin2 2β + cos2 2β cos ∆ cos 2β sin ∆

0 sin 2β sin ∆ − cos 2β sin ∆ cos ∆

























.

(3.14)
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The polarization state emerging from any sequence of optics can be determined by

calculating the product of their matrices and the incident Stokes vector. For example,

the Stokes vector, S′, for light transmitted first through a retarder with its fast axis

rotated to β from horizontal and then a linear polarizer with its transmission axis

rotated to γ from horizontal can be calculated as follows:

S′ = M
pol

(γ) M
ret

(β)S. (3.15)

3.3 Theory of the rotating quarter-wave plate method

The classical method for measuring polarization employs a quarter-wave plate (∆ =

π/2) with its fast axis fixed in space and aligned with the x-axis and a subsequent

linear polarizer rotated to different angles, γ, from the x-axis as defined by the optical

elements comprising the polarimeter. Three measurements would be taken with the

retarder removed and the polarizer set to γ = {0◦, 45◦, 90◦}, and the final measure-

ment with the retarder in place and γ = 45◦. This method, while satisfactory, is

problematic for several reasons: it relies upon accurate positioning of the polarizer’s

transmission axis; it uses only four measurements, increasing the chance for random

errors; and the introduction of the retarder for the last measurement results in the

absorption of some light, changing the intensity incident on the polarizer and thus

introducing a systematic error [12].

The rotating quarter-wave plate method is an alternative approach in which the

transmitted intensity is measured with the polarizer’s angle kept fixed while the re-

tarder’s fast axis is rotated to a set of angles, {βi}, from the x-axis. This method

has the advantage that an increased number of retarder angles can be used to reduce
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random errors and it remains in the beam path for the entire set of measurements,

eliminating systematic error in the total intensity. The relevant angles of optical

elements in the rotating quarter-wave plate polarimeter are shown in Fig. 3.1(a).

x

y

z

Γ

Φ

Β0

Retarder
Polarizer

(a)

x

y
F

F
F'

F'

Β0

Β0- 2Φ

Φ

(b)

Figure 3.1: (a) An illustration of the relevant angles for the calibrated rotating quarter-wave
plate method (angles have been exaggerated for clarity). The angle of the linear polarizer
transmission axis and the offset of the retarder fast axis in its initial position from x̂ are
denoted by γ and β0 respectively. The front-to-back rotation axis of the polarizer defines
ŷ and the misalignment of the retarder’s front-to-back rotation axis from this is denoted φ.
(b) The position of the fast axis is shown for the forward, F, and reversed, F′, orientations
of the retarder. When reversed, the fast axis is offset by −(β0 − 2φ) from x̂ due to the
misalignment of the retarder’s front-to-back rotation axis from ŷ.

The resultant Stokes vector for light exiting the polarimeter was given in Eq. (3.15).

An expression for the intensity of the transmitted light as a function of βi, ∆ and γ

can be obtained by taking the first element of S′:

I(βi,∆, γ) =
1

2
{S0 + S1[cos 2βi cos 2(γ − βi)− sin 2βi sin 2(γ − βi) cos ∆]

+ S2[sin 2βi cos 2(γ − βi) + cos 2βi sin 2(γ − βi) cos ∆] + S3[sin 2(γ − βi) sin ∆]}.

(3.16)

Following [7] this expression can be rearranged into a truncated Fourier series in βi
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with the values of ∆ and γ absorbed within the Fourier coefficients:

I(βi) =
1

2
(a0 + a2 cos 2βi + b2 sin 2βi + a4 cos 4βi + b4 sin 4βi). (3.17)

The minimum number of intensity measurements required in order to determine a0,

a2, b2, a4 and b4 is 5. For a set of N intensity measurements taken at equally spaced

values of βi ranging from 0 to (N − 1)π/N (effectively spanning 0 to π), the Fourier

coefficients can be found from:

a0 =
2

N

N
∑

i=1

Ii (3.18)

a2 =
4

N

N
∑

i=1

Ii cos 2βi (3.19)

b2 =
4

N

N
∑

i=1

Ii sin 2βi (3.20)

a4 =
4

N

N
∑

i=1

Ii cos 4βi (3.21)

b4 =
4

N

N
∑

i=1

Ii sin 4βi. (3.22)

Using additional measurements with the same spacing of βi between π and 2π still

allows Eqs. (3.18)–(3.22) to be used but also compensates for systematic errors due

to possible inhomogeneities in the retarder.

Provided that {βi}, ∆, and γ are accurately known, the Stokes vector of the
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incident light can then be derived using the intensity data as follows:

S0 = a0 −
1 + cos ∆

1− cos ∆
(a4 cos 4γ + b4 sin 4γ) (3.23)

S1 =
2

1− cos ∆
(a4 cos 2γ + b4 sin 2γ) (3.24)

S2 =
2

1− cos ∆
(b4 cos 2γ − a4 sin 2γ) (3.25)

S3 =
a2

sin ∆ sin 2γ
= − b2

sin ∆ cos 2γ
. (3.26)

In the case where β0 6= 0 (there is a finite but unknown offset between the re-

tarder fast axis and x̂), an accurate calibration requires replacing βi with βi + β0

in Eqs. (3.18)–(3.22) to correct for this. However, using the sum-difference trigono-

metric formulae, β0 can be factored out of the Fourier coefficients and absorbed into

Eqs. (3.23)–(3.26). Reversing each optic by rotating about a vertical axis is equiva-

lent to reflecting the optic axes in the horizontal reference axis, so β0 and γ become

−β0 and −γ. The axis orthogonal to the vertical rotation axis of the polarizer was

chosen to be the horizontal reference axis. The offset of the retarder fast axis must

then also be measured from the horizontal axis. If its front-to-back rotation axis is

offset from the polarizer’s vertical rotation axis by φ in the plane of the retarder’s

azimuthal rotation, −β0 must instead be replaced with −(β0−2φ) when the retarder

is reversed as depicted in Fig. 3.1(b). The normalized Stokes vectors calculated for

the four possible cases with each optic oriented either forward or reversed could be

expected to be inconsistent unless the values for β0, ∆, γ and φ are correct.

The formulae for calculating the Stokes vector when both optics are forward
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(case 1) and only the linear polarizer is reversed (case 3):

S
(1,3)
0 = a0 −

(1 + cos ∆)

(1− cos ∆)
[a4 cos 4(γ ∓ β0)± b4 sin 4(γ ∓ β0)] (3.27)

S
(1,3)
1 =

2

(1− cos ∆)
[a4 cos 2(γ ∓ 2β0)± b4 sin 2(γ ∓ 2β0)] (3.28)

S
(1,3)
2 =

2

(1− cos ∆)
[b4 cos 2(γ ∓ 2β0)∓ a4 sin 2(γ ∓ 2β0)] (3.29)

S
(1,3)
3 = ± a2

sin ∆ sin 2(γ ∓ β0)
= − b2

sin ∆ cos 2(γ ∓ β0)
, (3.30)

where the upper sign corresponds to case 1 and the lower sign corresponds to case 3,

and when only the retarder is reversed (case 2) and when both optics are reversed

(case 4):

S
(2,4)
0 = a0 −

(1 + cos ∆)

(1− cos ∆)
[a4 cos 4(γ ± β0 ∓ 2φ)± b4 sin 4(γ ± β0 ∓ 2φ)] (3.31)

S
(2,4)
1 =

2

(1− cos ∆)
[a4 cos 2(γ ± 2β0 ∓ 4φ)± b4 sin 2(γ ± 2β0 ∓ 4φ)] (3.32)

S
(2,4)
2 =

2

(1− cos ∆)
[b4 cos 2(γ ± 2β0 ∓ 4φ)∓ a4 sin 2(γ ± 2β0 ∓ 4φ)] (3.33)

S
(2,4)
3 = ± a2

sin ∆ sin 2(γ ± β0 ∓ 2φ)
= − b2

sin ∆ cos 2(γ ± β0 ∓ 2φ)
, (3.34)

where the upper sign corresponds to case 2 the lower sign to case 4. Here, for each

of the four cases the Fourier coefficients a0–b4 require calculation only once for any

number of values of β0 considered since it is absorbed into Eqs. (3.27)–(3.34). If the

correct values of β0, ∆, γ and φ are used, the normalized Stokes vectors calculated

for each of the four cases are expected to be consistent. An additional linear polar-

izer (LP′) set to provide incident light with comparable S1 and S2 components (i.e.

set approximately to ±22.5◦ or ±67.5◦) ensures that consistency can be determined
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for values of S1/S0 and S2/S0 well above the experimental uncertainty. However,

we found that coupling between β0, ∆ and φ leads to multiple possible values of

these parameters that produce, within experimental uncertainty, equally consistent

results for the calculated Stokes vectors but with incorrect values for the degree of

polarization. Fully polarized incident light (due to LP′) adds the requirement that

P (j) = 1 for all j as recognized and used also in [13]. Therefore, to determine the set

of parameters {β0,∆, γ, φ} closest to the correct values, calculation of the variances

of S
(j)
1 /S

(j)
0 and S

(j)
2 /S

(j)
0 added to the sum of the squared differences between P (j)

and 1 for each j, forms a quantity dependent upon both the scatter of S1 and S2 and

the radial distances of the end points of S(j), anchored at the origin, from the surface

of the unit Poincaré sphere [14]:

ξ =
4
∑

j=1











S
(j)
1

S
(j)
0

−
〈

S1

S0

〉





2

+





S
(j)
2

S
(j)
0

−
〈

S2

S0

〉





2

+ (1− P (j))2





 . (3.35)

Here the summation is over the 4 cases and 〈 . . . 〉 denotes the arithmetic mean. The

value of ξ takes a minimum at the position in {β0,∆, γ, φ} space given by the correct

values of these parameters. Note that we have hitherto assumed β0 refers to the angle

of the retarder’s fast axis from the reference axis. Since S3 is squared in Eq. (3.7),

this calibration method does not distinguish its fast and slow axes so one additional

measurement is required using a circular polarizer to resolve this ambiguity if required.

For example, if a circular polarizer placed before the polarimeter is used to produce

right circularly-polarized incident light and β0 is set approximately to 45◦, then the

resultant light will be predominantly vertically linearly-polarized (depending on how

close ∆ is to π/2) if β0 corresponds with the fast axis. Conversely, the resultant
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light will be predominantly horizontally linearly-polarized if β0 corresponds with the

slow axis. This can be determined using a polarizing beam-splitter placed after the

polarimeter with the linear polarizer in the polarimeter removed.

In summary, calibration of the polarimeter involves using linearly polarized in-

cident light and calculating the Fourier coefficients for each of the four cases using

Eqs. (3.18)–(3.22) and subsequently mapping out ξ(β0,∆, γ, φ) where S0 − S3 are

obtained from Eqs. (3.27)–(3.34). The polarization state of any light with unknown

polarization can then be precisely found by removing the additional linear polarizer,

measuring a set of intensities {Ii}, and calculating the Stokes vector for this light

using Eqs. (3.27)–(3.30) and the parameter values corresponding to the minimum

previously found in ξ as illustrated in section 3.5.1.

3.4 Experimental setup

The original motivation for precisely measuring the polarization state of light and

subsequently refining the rotating quarter-wave plate technique was to characterize

the polarization of InGaAsP laser diodes in an external cavity configuration. Given

this, a Philips CQL806 high-power laser diode was used for all measurements. The

optical train for the polarimeter calibration and polarization measurement experiment

involved light from the laser diode being coupled into a single-mode optical fiber to

improve its spatial intensity profile (see Section 3.4.1 for further details). The fiber

coupler was preceded by a Faraday rotator-type optical isolator (OI) to prevent back-

reflections from destabilizing the laser. Upon exiting the fiber, the near-TEM00 beam

was expanded to ∼ 8 mm in diameter with a pair of plano-convex lenses. A highly

horizontally linearly polarized beam was then produced by two consecutive polarizing
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beam-splitters (PBSs). The s-polarized reflection from the first was sent to an optical

spectrum analyzer (OSA) to monitor the mode structure of the laser in real-time. The

very weak reflection from the second was sent to a reference photodiode for power

normalization in the event of laser drift. The p-polarized beam exiting the second PBS

was to be analyzed by the polarimeter which was preceded by the additional linear

polarizer (LP′) during the calibration procedure. Polarization insensitive neutral

density filters (NDs) were used to attenuate the beam exiting the polarimeter in order

to take advantage of the full analog-to-digital conversion range of the microcontroller

that processed the measured signals. This beam and the reference beam were focused

onto OPT101 photodiodes for the calibration and subsequent intensity measurements.

The experimental setup is illustrated in Fig. 3.2. Details of each component of the

experimental setup are given below:

3.4.1 Fiber coupling

A popular technique for improving the spatial intensity profile of a laser beam is to

couple it into a single-mode fiber. Due to the extremely small diameter of the fiber

core (∼ 5µm), only the lowest order transverse mode (TEM00) can propagate within

it. This means that the output beam from the fiber collimator is TEM00 with a

Gaussian intensity profile. This profile was desirable for measuring the polarization

of the beam in order to sample the entire retarder face (after beam expansion with

two plano-convex lenses) with an azimuthally uniform intensity profile in order to

average out any small spatial inhomogeneities in the material’s birefringence.

To develop our approach, a helium-neon laser (λ = 633 nm) was initially coupled
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Figure 3.2: Schematic of the experimental setup. The beam under test originates from
an external-cavity diode laser after which its diameter is increased to ∼ 8 mm by a beam
expander (BE). A pair of polarizing beam-splitters (PBS) produce a horizontally-polarized
beam with which to test the calibration method. The first s-polarized reflection is sent to
an optical spectrum analyzer (OSA), while the weak second reflection serves as a reference
for power normalization. The polarimeter itself consists of a quarter-wave plate (λ/4) and
linear polarizer (LP) in rotational mounts. The calibration method employs an additional
linear polarizer (LP′) set to make S1 ≈ S2 and is removed for regular beam analysis. The
retarder is rotated via a worm gear by the stepper motor (SM) and the transmitted light
is measured by a photodiode (PD) after attentuation by a neutral density filter (ND). The
microcontroller (µC) controls both the SM and records the PD voltages for transmission to
a computer.

into a single-mode optical fiber with 65% efficiency. Optimal coupling requires Gaus-

sian mode-matching of the fiber and the beam. This means that the beam should

have a near Gaussian intensity profile and the 1/e2 beam width should match the
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mode field diameter, MFD, of the fiber core. The He-Ne laser was chosen to in-

vestigate fiber-coupling since it is known to have an approximately Gaussian beam

profile. The Gaussian wavefronts should be planar when they meet the fiber tip for

optimal coupling into the core. This means that an appropriate lens should be used

that will focus the beam down to the MFD at the beam waist (the narrowest width,

corresponding to the focal point in a ray optics picture) and this beam waist should

be positioned at the fiber tip. An A375TM-B 7.5 mm focal length aspheric lens from

Thorlabs (with an RMS wavefront error of 0.028 waves and 40-20 Scratch-Dig surface

quality) was suggested for this application by a colleague∗. The type of single-mode

fiber suitable for these wavelengths (SM600) has a MFD of 4.3µm @ 633 nm and

4.6µm @ 680 nm.

Gaussian beam analysis

The spot size (the distance from the beam axis to where the intensity drops to 1/e2

of its maximum value, i.e. half of the 1/e2 width) of a perfect Gaussian beam as it

propagates is described by [15]:

w2(z) = w2
0

(

1 +
z2

z2R

)

, (3.36)

where w0 is the smallest spot size, called the beam waist (assumed to be positioned

at z = 0) and zR is the Rayleigh range (the distance from the waist at which the spot

size reaches
√

2w0). The Rayleigh range is given by:

zR =
πw2

0

λ
, (3.37)

∗The author would like to acknowledge Fredrik Fatemi for this suggestion
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where λ is the wavelength of the light. The appropriate spot size incident on the 7.5

mm lens for mode-matching with SM600 fiber can be derived using Eq. (3.36) and

simple trigonometry. In the far field (far beyond the Rayleigh range) the spot size is

approximately:

w(z >> zR) ≈ zλ
πw0
. (3.38)

From this approximation we can derive the divergence angle, θ, of the beam in terms

of the spot size of the beam waist and the wavelength of light:

tan θ ≈ λ

πw0
. (3.39)

For optimal coupling into the fiber core, we want the width of the beam (twice the

spot size) at its waist to be equal to the MFD of the fiber:

w0 =
MFD

2
. (3.40)

If we assume that the beam incident on the coupling lens is collimated, then the beam

waist will be located at a distance equal to the focal length of the lens, f , from its

principle plane. Following from this, the divergence angle can also be expressed in

terms of the focal length of the lens and the spot size of the collimated beam, wc:

tan θ =
wc
f
. (3.41)

By equating Eqs. (3.39) and (3.41), the spot size of the collimated beam can be

related to the MFD, f , and λ. Since these parameters are already specified, all that

is required for optimal coupling is a highly collimated beam of the appropriate spot



CHAPTER 3. PRECISION MEASUREMENT OF POLARIZATION 23

size given by:

wc ≈
2λf

πMFD
. (3.42)

A rigorous approach to fulfilling these requirements for a given beam involves

determining the complex radius of curvature, q̃(z), which describes how the beam’s

wavefronts evolve as it propagates, through fitting Eq. (3.36) to a series of spot size

measurements obtained with a beam profiler. An ABCD system matrix representing

an arbitrary sequence of lenses and distances that satisfy the coupling requirements

can subsequently be derived. The results of such an approach enabled coupling of

the He-Ne beam into a single-mode fiber with 65% efficiency. This served as a bench-

mark with which to compare the coupling efficiencies of diode laser beams with non-

rotationally symmetric spatial intensity profiles.

Fiber coupling alignment guide

The light from a Lumex SSL-LX100T123SIC high-power red LED (with peak wave-

length at 636 nm) coupled into the ‘free’ end of the fiber was found to produce an

adequate guide beam in a darkened room for aligning the fiber-coupling apparatus

with the He-Ne cavity prior to switching it on. A schematic of a simple alignment

device that was designed and built for this purpose is shown in Fig. 3.3. A cone

of polished aluminum with 0.5 mm threading to accept that of the output end of a

Thorlabs FC260APC-B fiber collimation package was fabricated to efficiently couple

light from the LED into the intended output end of the fiber. The guide beam exiting

the through the coupling lens was then overlapped with the beam to be coupled using

two mirrors.

Upon removing this alignment guide from the output collimator, coupled laser
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light could already be seen at the output. Fine tuning of the z position of the coupling

lens and re-adjustment of the x and y tilt of the fiber coupler and alignment mirrors

was subsequently required. The use of this alignment guide drastically reduced the

time required to achieve a satisfactory coupling efficiency (∼ 45%) when coupling

laser diode beams into a single-mode fiber.

FC260-APC-B

0.5 mm pitch

1.5 Ω

3 V

15 pF

xx
xx
xx
xx

xx
xx
xx

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

Figure 3.3: Fiber coupling alignment guide.

3.4.2 Polarimeter

The polarimeter consists of a retarder and linear polarizer placed in removeable rota-

tional mounts [9]. Light passes first through the retarder and then the linear polarizer

and the transmitted intensity is measured with a detector as shown in Fig. 3.2. An

initially undetermined (fast or slow) optic axis of the retarder is initially set approx-

imately parallel to the horizontal reference axis, x̂, by retroreflecting a horizontally

polarized beam through the retarder and minimizing the vertically polarized compo-

nent using a PBS. The linear polarizer transmission axis is kept at a fixed angle γ from

+x̂. It was found that the calibration procedure was most robust with γ fixed near

±45◦ which is straight-forward to determine with a PBS temporarily placed after the

linear polarizer. The mounts of the retarder and linear polarizer permit front-to-back
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(180◦) rotation about an axis perpendicular to the direction of beam propagation (+ẑ)

allowing each optic to be oriented either “forward” or “reversed” for the four possible

cases used in this calibration method. With the retarder removed, the front-to-back

rotation axis of the linear polarizer is set to be vertical by placing a PBS before it and

measuring equal transmitted intensities for both forward and reversed orientations.

The retarder’s front-to-back rotation axis is then set approximately parallel to that

of the linear polarizer’s by eye (φ ≈ 0◦).

A series of intensity measurements were taken with LP′ in place and the re-

tarder rotated counter-clockwise (as seen looking toward the light source along −ẑ)

by N = 50 equal intervals in 360◦. The transmission axis of LP′ was set to provide in-

cident light with comparable S1 and S2 components. The retarder’s rotational mount

was driven by a worm gear where one full rotation of the worm gear advanced the

rotational mount by 3.6◦. A stepper motor advanced the worm gear by 1.8◦ per step,

offering a precision of 0.01◦ in the N angles {βi+β0} between the horizontal reference

axis and the fast axis of the retarder. The stepper motor was controlled by a pair of

UC3770AN stepper motor controllers and a PIC18LF2320 microcontroller [18]. The

ADC (analog-to-digital) capability of the PIC read and stored voltages from the PDs

that monitored the light transmitted through the polarimeter and the reference beam

as 10–bit values at each βi and transmitted them via RS-232 to a computer. Neutral

density filters attenuated the transmitted beam in order to achieve maximum resolu-

tion within the PIC’s 0-5 V ADC range. The transmitted intensities were normalized

to the reference intensities to correct for systematic errors caused by laser drift. For

each of the four cases, a set of normalized intensity data was obtained and the Fourier

coefficients were calculated from Eqs. (3.18)–(3.22). Using Eqs. (3.27)–(3.34), Stokes
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vectors were calculated for each case followed by a calculation of ξ using Eq. (3.35)

at a range of {β0,∆, γ, φ} values.

3.4.3 Automation control and data acquisition

Automation of the rotating quarter-wave plate polarimeter was controlled by a Mi-

crochip PIC18LF2320 microcontroller. The PIC was programmed to set pins 11 and

21 to output alternating high-low logic signals to the phase inputs of the Unitrode

UC3770A stepper motor drivers. A complete high-low sequence sent to both drivers

advances the stepper motor by 1.8◦. After 400 steps the PIC pauses to receive analog

voltage signals on pins 2 and 3 from the photodiodes and stores them as 10–bit values

following conversion by its on-board ADC. 50 values are stored in the PIC’s memory

for transmission at the end of data collection. PC interface via RS-232 was made

through output pins 17 and 18 using a Maxim MAX232 driver/receiver.

Figure 3.4: The PIC18LF2320 microcontroller controls UC3770A stepper motor drivers and
converts analog photodiode voltages to digital signals for output to a PC via RS-232 using
a MAX232 driver/receiver
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3.5 Results

The calibration scheme involves an iterative 4-dimensional parameter search to find

the set of values {β0,∆, γ, φ} that minimizes ξ. An important consideration is the

choice of a suitable sampling resolution in each parameter to obtain the true minimum

in a reasonable computational time. We found that an initial sampling resolution of

no larger than ∼ 1◦ was necessary to locate the region of the global minimum in

parameter space in the first iteration. Typical parameter ranges used for the initial

search were:

−5◦ ≤ β0 ≤ 5◦ (3.43)
(

λnom
π/2

λ

)

85◦ ≤ ∆ ≤
(

λnom
π/2

λ

)

95◦ (3.44)

40◦ ≤ γ ≤ 50◦ (3.45)

−5◦ ≤ φ ≤ 5◦, (3.46)

The range of ∆ is sufficient to find the retardance of a quarter-wave plate within

manufacturing tolerances if an approximate value has been assumed from the design

wavelength. The ranges of β0, γ and φ allow for typical experimental uncertainties in

the alignment of the optics in the polarimeter described above. Experimental results

of nine calibrations using this search are presented in Section 3.5.2.

3.5.1 Simulation of the calibration method

The validity of the calibration method was analyzed by choosing specific values for β0,

∆, γ and φ and generating simulated intensity data with a typical signal-to-noise ratio

(SNR) of 40 for each of the four cases. For each case and each value of (β0,∆, γ, φ),
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ξ was mapped with an initial sampling resolution of ∼ 1◦ in all parameters. In

successive iterations, the sampling interval of each parameter was halved while keeping

the number of samples fixed and the new range was centered at the position of the

minimum value of ξ from the previous iteration. Using simulated data with random

noise added for an incident Stokes vector corresponding to light polarized at 67.5◦,

β0 = 2◦, ∆ = 0.26×2π = 93.6◦, γ = 44◦, φ = 1◦, the following values were found after

10 search iterations: βcalc
0 = 1.91◦, ∆calc = 93.56◦, γcalc = 43.93◦, φcalc = 0.92◦. For

illustration, a cut through the surface of log10[ξ(β0,∆)] showing its dependence on β0

and ∆ is graphically depicted in Fig. 3.5. As expected this shows a global minimum

very close to the position of the correct values.

Figure 3.5: The dependence of ξ on β0 and ∆ using the values γ = 43.93◦ and φ = 0.9221◦

which were found after 10 search iterations for data simulated using the values: β0 = 2◦,
∆ = 0.26 × 2π = 93.6◦, γ = 44◦, φ = 1◦ and an incident Stokes vector corresponding to
67.5◦ polarized light and with noise added. The dashed lines indicate the chosen values of
β0 and ∆.

The deleterious effect of a small misalignment of the retarder’s front-to-back ro-

tation axis from +ŷ (φ 6= 0◦) is illustrated in Fig. 3.6 by two surfaces showing the
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dependence of ξ on β0 and ∆ for the same simulated data, one in red assuming φ = 0◦

(i.e. not including φ in the parameter search), and another in blue using the value

obtained for φ from the search. The position of the erroneous minimum is indicated

with dashed lines while the true values of β0 and φ are indicated with solid lines.

Figure 3.6: The dependence of ξ on β0 and ∆ for data generated using φ = 1◦ with noise
added. The two surfaces were plotted assuming values of φ = 0◦ (minimum indicated by
dashed lines, red) and φ = 0.92◦ (minimum located close to the intersection of the solid
lines, blue) with a 5 mrad sampling resolution. The solid lines indicate the chosen values
of β0 and ∆ while the dashed lines indicate the erroneous minimum.

The robustness of the calibration scheme and an indication of its applicability in

practice was determined by adding different levels of random noise to the simulated

data and calculating the absolute differences between the correct parameter values

and those found after eight iterations, averaged over 20 calibration simulations, for

41 values of SNR (see Fig. 3.7). The data was simulated using the same parameter

values as were used for Figs. 3.5 and 3.6. This indicates that a SNR greater than 7

is sufficient to obtain all parameters to within ∼ 1◦ of the correct values using this

calibration method.
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Figure 3.7: Analysis of calibration results for simulated data with added random noise
using parameter values: {β0, ∆, γ, φ} = {2◦, 0.26 × 2π = 93.6◦, 44◦, 1◦}. Each datum is
the average over 20 sets of results with the same SNR value. For comparison, data used to
construct Table 3.1 had SNR values in the range 40–61 for the three different retarders.

3.5.2 Experimental verification of the calibration method

The broad applicability of this calibration method was demonstrated using three dif-

ferent quarter-wave retarders with 672.7 nm light from a fiber-coupled laser diode.

A beam-expander increased the beam-width to ∼ 8 mm to average over inhomo-

geneities in the polarimeter optics. True zero-order mica wave plates were used with

design wavelengths λnom
π/2 = {670 nm, 645 nm, 548 nm}. These design wavelengths

correspond to retardances of 89.6◦, 86.4◦ and 74.4◦ respectively at the optical wave-

length used [19], taking account of the variation of birefringence with wavelength in

mica [20]. Note that inconsistencies in the published data for the dispersion of mica

birefringence make these values necessarily approximate [21]. Additionally, to demon-

strate the reliability of this calibration technique against experimental misalignment,

for each retarder the polarimeter was calibrated for three different values of φ by
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intentionally misaligning the retarder’s front-to-back rotation axis in the plane of its

azimuthal rotation by φnom = {−3.6◦, 0,+3.6◦} (see Fig. 3.8). The fast axis of each

retarder was approximately aligned with x̂ (β0 ≈ 0). For each of the nine calibrations,

the linear polarizer transmission axis was kept at a fixed angle γ from x̂. The results

of these nine calibrations are presented in Table 3.1. We expect consistency between

the three values determined for β0 and ∆ for each retarder and further, the results

for γ and φ − φnom should be consistent between all nine calibrations. The obser-

vations follow these predictions with the expected similarities clearly visible within

each column, and for γ and φ − φnom throughout the whole table. Further, anal-

ysis of the 670 nm wave plate using 777.6 nm light resulted in values β0 = 4.46◦,

γ = 144.15◦ and φ − φnom = 1.88◦, all within ∼ 1◦ of the values obtained at 672.7

nm, and ∆ = 76.76◦, within ∼1◦ of the nominally expected value of 670/780× 90◦.

These small variations may be attributed to the realignment required to change to

a light-source at a different wavelength. Due to the fixed separation between the

lens and the fiber tip within the fiber collimator, the 777.6 nm beam emerged with a

slightly different divergence angle. This required realignment of the beam-expanding

lenses to obtain a well-collimated beam after expansion. This realignment may have

changed the beam’s angle of incidence with the polarimeter optics, thus changing the

reference frame from which the angles of the optics’ axes were measured.

To verify that each of the nine calibrations could individually provide a normalized

Stokes vector consistent with the incident polarization state, LP′ was removed and

an additional set of intensity data was recorded with horizontally-polarized incident

light provided by the two consecutive polarizing beam-splitters. These results are

presented in Table 3.2. We expect consistency between the calculated Stokes vectors,
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Figure 3.8: Illustration of the intentional offset of the retarder’s front-to-back rotation
axis from approximately vertical, φnom, the value of its actual offset from the y-axis, φ, as
determined by the calibration method and the difference between these two values, φ−φnom,
which is expected to be constant for any value of φnom.

and for these to correspond to that for horizontally polarized light. The nine Stokes

vectors are indeed highly consistent with one another, as shown by the low standard

errors in S1, S2 and S3 in Eq. (3.47). The mean values of the normalized Stokes

parameters and the degree of polarization with the standard errors derived from

these measurements are:

〈S〉 =

























1.000

0.995± 0.001

0.121± 0.002

0.0158± 0.0003

























(3.47)

〈P 〉 = 1.002± 0.001. (3.48)
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The average value for S3 indicates a consistent small ellipticity angle† (χ = 0.5◦),

possibly due to stress-induced birefringence in a polarizing beam-splitter. The values

for S1 and S2 reflect a small (∼ 3◦) misalignment between the transmission axis of

the second polarizing beam-splitter and the horizontal reference axis defined to be

perpendicular to the linear polarizer’s front-to-back rotation axis. While the expected

value of unity for P does not lie within the standard error of its mean value, this value

is acceptably close to unity and the slight deviation reflects a small systematic error

possibly incurred during the measurement procedure.

†The ellipticity angle of the polarization ellipse is given by χ = 1

2
sin−1(S3/S0) for fully polarized

light [12].
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Table 3.1: Experimental results for nine calibrations with 672.7 nm light using three different
quarter-wave plates with design wavelengths denoted by λnom

π/2 , each with three different
values of φnom.

φnom λnom
π/2 = 670 nm λnom

π/2 = 645 nm λnom
π/2 = 548 nm

+3.6◦

β0

∆
γ

φ− φnom

3.34◦

90.47◦

144.22◦

0.85◦

3.80◦

86.34◦

144.31◦

0.82◦

1.16◦

75.12◦

144.21◦

0.81◦

0◦

β0

∆
γ

φ− φnom

3.55◦

90.40◦

144.29◦

0.94◦

3.79◦

86.28◦

144.29◦

0.82◦

1.32◦

75.20◦

144.22◦

0.85◦

−3.6◦

β0

∆
γ

φ− φnom

3.29◦

90.47◦

144.22◦

0.77◦

3.78◦

86.30◦

144.30◦

0.80◦

1.51◦

75.09◦

144.17◦

0.87◦

〈β0〉
〈∆〉

3.39(8)◦

90.45(2)◦
3.787(5)◦

86.31(2)◦
1.3(1)◦

75.13(3)◦

〈γ〉 144.25(2)◦

〈φ− φnom〉 0.84(2)◦
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Table 3.2: Stokes vectors derived from measurements of horizontally polarized light at
672.7 nm using three different retarders and three intentional misalignments of the retarder
vertical rotation axis using the nine calibrations presented in Table 3.1.

φnom λnom
π/2 = 670nm λnom

π/2 = 645nm λnom
π/2 = 548nm

+3.6◦











1.000
0.992
0.120
0.016





















1.000
0.996
0.116
0.016





















1.000
0.990
0.128
0.015











0◦











1.000
0.998
0.128
0.016





















1.000
0.998
0.117
0.016





















1.000
0.992
0.122
0.014











−3.6◦











1.000
0.996
0.117
0.017





















1.000
1.001
0.115
0.017





















1.000
0.989
0.128
0.016













Chapter 4

Literature review - Fabry-Perot

interferometers and absorption

spectroscopy

Since its conception in 1897 [22], the elegantly simple Fabry-Perot interferometer

has been used in a wide range of applications in optical physics including waveme-

ters, dichroic filters, laser resonators, and of relevance to this project, emission and

absorption spectrometers.

Known for their use in recording high-resolution spectra, Fabry-Perot spectrom-

eters have been used to verify the Doppler broadening of emission lines, observe

Zeeman splitting and analyze the hyperfine structure of atoms where spectral lines

are usually too close together to resolve with conventional spectrometers.

Fabry-Perot elatons came into use in astronomical absorption spectroscopy as early

as 1927 [23] although with limited success. The chief problem was that slit-pattern dis-

tortion produced by the primary dispersive instrument (e.g. a monochromator) would

36
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degrade the resolution of the Fabry-Perot fringe pattern. Primary monochromatiza-

tion is necessary to limit the spectrum to a wavelength range less than that contained

within one period of the repeating fringe pattern produced by the Fabry-Perot etalon

(the free spectral range) to avoid overlapping of successive interference orders [24].

The details of combining a pre-monochromator with Fabry-Perot spectrometers

were experimented with extensively through the mid-20th century. Treanor reported

an order of magnitude improvement in the resolving power attained by a Fabry-Perot

configuration coupled with a Littrow spectroscope when analyzing the D region of

the solar spectrum [25]. Other attempts to improve resolution included crossing a

Fabry-Perot interferometer with a prism monochromator to resolve the rotational

structure of HCl in the infra-red [26] and with a grating spectrometer to resolve that

of HCN [27]. While offering orders of magnitude higher resolving power in the infra-

red region, these configurations were limited to only investigating a small wavelength

range of the spectrum of interest at a time since the free spectral range of Fabry-Perot

etalons is necessarily small for high-resolution work [28].

Attempts were made to scan the monochromator prism in conjunction with the

interferometer plates in order to continously record an extended region of the spec-

trum, but this was found to be impractical compared to the contemporary innova-

tions of multiple-passing prism and grating spectrometers [29, 30]. Further, this did

not provide the ultimate solution as reflection losses reduced the light intensity in

multiple-passes [31]. Nonetheless, Fabry-Perot etalons were found to have superior

luminosity – the output flux received by a detector – over grating and prism spec-

trometers for a given resolving power at a particular wavelength and dimension of

dispersive element [32].
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Absorption spectroscopy is an important tool for identifying the presence of par-

ticular molecular species in a sample and quantifying their concentrations. Many

techniques are used to obtain the absorption spectrum of a sample but in most cases

(with the exception of tunable diode laser absorption spectroscopy) a sample cell or

volume is irradiated with broadband light and the transmitted light is measured by

a detector. A dispersive element between the sample and the detector decomposes

the transmitted light either spatially or temporally into its component frequencies

enabling determination of the amount of transmitted light at each frequency. From

this information, the absorption spectrum of the sample can be reconstructed and

analyzed [33].

We now attempt to understand in more detail the Fabry-Perot interferometer

as an absorption spectrometer and determine under what conditions it is useful for

providing qualitative and quantitative information about samples under study.



Chapter 5

Fabry-Perot absorption

spectroscopy

Currently, analytical devices that detect a single, or small number, of known species

are based on chemical reaction or fuel cell technologies due their portability and

acceptable level of accuracy. For evidential (quantitative) testing, IR spectroscopy

remains the standard analysis technique but is usually restricted to non-portable

analysis in a laboratory following a positive screening test. To extend the capability of

in-the-field devices to quantitative molecular detection, without the aging issues that

currently befall fuel cell-based devices, a portable instrument based on a spectroscopic

detection scheme is desired.

The Fabry-Perot interferometer is a compact and robust interferometer design

and is capable of high-resolution work with higher luminosity than grating and prism

spectrometers for a given resolving power, where luminosity refers to the energy flux

output [32]. Fabry-Perot spectroscopy is a well established technique but is commonly

39
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used for emission spectroscopy such as resolving hyperfine spectra from atomic emis-

sion or studying faint astronomical sources as discussed in Chapter 4. Fabry-Perot

absorption spectroscopy was superseded more than 40 years ago by other techniques

such as multiple-monochromator configurations that offer a similar spectral resolu-

tion. However, due to its potential for portability, we wish to revisit the Fabry-Perot

as an absorption spectrometer and investigate its feasibility for quantitative detec-

tion of ethanol in human breath samples. This involves establishing conditions on

the linestrengths and linewidths within the spectrum of interest for which it is use-

ful as an absorption spectrometer using realistic instrumental parameter values. We

subsequently attempt to determine if these requirements can be met for the molecule

of choice and anticipated concentration.

The strategy adopted in this chapter is as follows: First, a mathematical de-

scription of the Fabry-Perot interferometer, that incorporates the effects of non-

monochromatic incident light sources and inevitable manufacturing imperfections,

will be given followed by simulations of its transmission function for varying instru-

mental parameters such as the bandwidth of the light source and quality of the inter-

ferometer’s surfaces. Second, the basic principles of absorption spectroscopy, namely

Beer’s Law, will be introduced to guide the reader through the details of the absorp-

tion spectrum of a human breath sample containing water and ethanol vapours. This

will provide a basis for outlining the detection scheme and subsequently establishing

its spectroscopic requirements. Third, a new concept for a portable, optical breatha-

lyzer will be outlined as a possible application for the proposed detection scheme.
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5.1 Fabry-Perot interferometry

5.1.1 The ideal Fabry-Perot interferometer

A Fabry-Perot interferometer is based on interference between co-propagating plane

waves reflected from two parallel highly-reflecting surfaces and therefore falls into the

category of multiple interference devices. When a resonance condition is met, defined

by refractive index between the surfaces, n, and their separation, d, as well as the

angle of internal reflection, θ, and wavelength, λ, of monochromatic light entering

the interferometer, constructive interference produces a bright fringe that is visible

on a screen placed behind the interferometer. If the incident light is composed of a

set of monochromatic lines, several resonance conditions exist producing a repeating

series of fringes. The resonance condition is met when the phase difference between

the co-propagating plane waves, δ, i.e. the round trip phase difference:

δ =
4πnd cos θ

λ
(5.1)

is equal to an integer multiple of 2π. The interference or fringe order (i.e. the number

of full periods of phase difference between adjacent reflected rays) is correspondingly:

m =
δ

2π
=

2nd cos θ

λ
. (5.2)

Scanning n, d, θ or λ in time effectively scans δ, producing a temporal variation in

intensity when the transmitted (or reflected) rays are focused onto a detector with

a lens. A Fabry-Perot interferometer with a fixed d – commonly a solid slab with

refractive index n – is known as an etalon. For this configuration θ is related to the
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θ
θ i

ni n

d

Figure 5.1: Illustration of a solid Fabry-Perot etalon of refractive index n and thickness d
with a monochromatic light beam incident at θi. The refractive index outside the etalon is
ni and θ is the angle of internal reflection.

angle of incidence of collimated light entering the etalon, θi, by Snell’s law:

n sin θ = ni sin θi, (5.3)

where ni is the refractive index outside the etalon (see Fig. 5.1). If the incident light

enters the interferometer with a range of angles, i.e. the light is non-collimated, a

spatial fringe pattern of bright and dark concentric rings is produced on a screen

placed behind the interferometer.

The power transmission function of an ideal etalon with homogeneous absorp-

tion and/or scattering by the material that comprises the etalon and monochromatic

incident light is given by [34]:

Y (δ) =
A (1− R)2

1− 2R cos δ +R2
(5.4a)

=
A

1 +
[

4R (1−R)−2
]

sin2 (δ/2)
, (5.4b)
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where A includes the absorption and/or scattering effects and R is the reflectivity of

the etalon given by the product of the reflection coefficient of each surface. Eq. (5.4b)

is known as the Airy function.

It is apparent that constructive interference fringes are spaced by 2π in δ-space.

If a second monochromatic source is introduced, its wavelength relative to the first

can be unambiguously determined if the difference in wavelength between them is less

than the free spectral range of the etalon. The difference in wavelength at which the

nth fringe produced by the second source overlaps with the (n+ 1)th fringe produced

by the first defines the free spectral range. In terms of wavenumber (ν̃ ≡ λ−1) the

free spectral range is:

∆ν̃fsr =
1

2nd cos θ
. (5.5)

In other words, the free spectral range is the spectral window that can be seen in

one period of the produced fringe pattern. For spectroscopic work using a Fabry-

Perot etalon, it is necessary to limit the total width of the spectrum one wishes to

investigate to less than the etalon’s free spectral range by using a narrowband source,

band-pass filter or pre-monochromator to avoid overlapping of spectral orders. The

free spectral range can also be defined in terms of the difference between adjacent

interference orders in the other scannable parameters (n, d, θ), indicating the tuning

range beyond which a fringe pattern is necessarily expected to repeat. For example:

∆dfsr =
1

2nν̃ cos θ
(5.6)

is the tuning range of d between adjacent orders.

Similarly, the full width at half maximum (FWHM) of each interference fringe can
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be expressed in terms of any of the scannable parameters. For an ideal etalon with

monochromatic light, the FWHM of fringes in terms of δ is given by:

∆δ = 4 sin−1

[

1− R
2
√
R

]

≈ 2(1−R)√
R
, (5.7)

where the approximation shown in (5.7) and the next three equations is valid when

R ≈ 1.

The ratio of the free spectral range to the FWHM of fringes is called the finesse,

F . This ratio is independent of the scannable parameters so it is a useful metric

for describing the quality of an etalon. The finesse of an ideal etalon, known as the

reflective finesse, is solely dependent on the reflectivity of the surfaces and increases

rapidly as R approaches 1:

F =
∆δfsr
∆δ

=
π

2 sin−1

[

(1− R)
(

2
√
R
)−1

] ≈ π
√
R

1− R. (5.8)

The resolving limit or spectral resolution is defined according to the Rayleigh

criterion as follows: two equal intensity peaks are said to be resolved or clearly distin-

guishable from each other when their separation is equal to their FWHM and so the

resolving limit is given by the FWHM of fringes. In terms of wavenumber, or indeed

any of the scannable parameters, this can be derived from the finesse of the etalon

and the appropriate representation of the free spectral range. For example:

∆ν̃ =
∆ν̃fsr
F =

sin−1

[

(1− R)
(

2
√
R
)−1

]

πnd cos θ
≈ (1− R)R−1/2

2πnd cos θ
. (5.9)

In contrast to the finesse, the resolving power, R, is dependent on the wavenumber
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of the incident light and is equivalently defined in terms of any of the scannable

parameters:

R =
ν̃

∆ν̃
=
n

∆n
=
d

∆d
=

cos θ

∆ cos θ
=

πν̃nd cos θ

sin−1

[

(1− R)
(

2
√
R
)−1

] ≈ 2πν̃nd cos θ

(1− R)R−1/2
.

(5.10)

An R value of 106 or more is indicative of a ‘good’ Fabry-Perot interferometer for a

given light source.

5.1.2 Non-monochromatic sources

In practice, for any set of instrumental parameters the response function of a Fabry-

Perot etalon is broadened by finite-linewidth light sources. In conventional Fabry-

Perot emission spectroscopy, the finite linewidth of spontaneous emission due to nat-

ural lifetime broadening (Lorentzian lineshape) and Doppler broadening (Gaussian

lineshape) results in broadening of interference fringes further than that given by

Eq. (5.7).

The effects of non-monochromatic sources can be incorporated into the resultant

interference pattern by adding together a set of ideal etalon responses with an in-

tensity distribution in the form of the appropriate lineshape [35]. If the lineshape is

symmetric, the mathematical operation that describes this is the convolution integral.

The convolution h(x) of two symmetric functions, f(x) and g(x), is given by:

h(x) = f ∗ g =

∞
∫

−∞

f(y)g(x− y)dy. (5.11)

This operation can be pictured as inverting one function and sliding it across the other,
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computing the product of the two functions at each step. In general (for asymmetric

functions) the cross-correlation integral, which instead involves g(x + y), describes

the above operation but for convenience the convolution is widely used where possi-

ble. The convolution owes its convenience of use to its commutativity, associativity

and distributivity – properties that are not shared by the cross-correlation. Analytic

solutions to convolutions of (a) Gaussian, (b) Lorentzian and (c) top hat (boxcar)

functions with the ideal etalon response function are presented below with derivations

for each one given in Appendix A:

(a) The functional form of a unit area Gaussian source profile, SG(x), centred at

x = 0 with FWHM ∆xG is given by:

SG(x) =
1√
πG
e−x

2/G2

, ∆xG = 2
√

ln 2G, (5.12)

and examples plotted in terms of phase angle, δ, for different values G are shown in

Fig. 5.2(a). The convolution of a Gaussian profile written in terms of δ with the ideal

etalon response function is as follows:

YG(δ) = SG ∗ Y =

∞
∫

−∞

SG(y)Y (δ − y)dy

=
1− R
1 +R

[

1 + 2
∞
∑

k=1

Rke−k
2G2/4 cos kδ

]

. (5.13)

Eq. (5.13) can be used to determine the interference pattern produced by an etalon

illuminated by a light source with a Gaussian spectral profile as a function of δ [as has

been done in Fig. 5.2(b)] or any of the scannable parameters through an appropriate
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Figure 5.2: (a) Gaussian source profiles and (b) corresponding etalon responses for R =
0.995.

variable transformation.

(b) A unit area Lorentzian source profile, SL(x), centred at x = 0 with FWHM ∆xL

is given by:

SL(x) =
L

π

1

L2 + x2
, ∆xL = 2L, (5.14)

and is shown plotted in terms of δ for different values of L in Fig. 5.3(a). The

convolution of a Lorentzian profile with the ideal etalon response function is as follows:

YL(δ) = SL ∗ Y =

∞
∫

−∞

SL(y)Y (δ − y)dy

=
1− R
1 +R

[

1 + 2
∞
∑

k=1

(Re−L)k cos kδ

]

, (5.15)

Similarly, the fringe pattern produced by a Lorentzian light source (e.g. spontaneous

emission in the absence of Doppler broadening) incident on an ideal etalon can be

determined using Eq. (5.15). Examples of this are illustrated in Fig. 5.3(b).
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Figure 5.3: (a) Lorentzian source profiles and (b) corresponding etalon responses for R =
0.995.

(c) A unit area top hat source function of width W centred at x = 0 is given by:

SΠ(x) =
1

W
ΠW (x), ΠW (x) =



















1, |x| ≤W/2

0, |x| > W/2
, (5.16)

with examples plotted in terms of δ for different values ofW illustrated in Fig. 5.4(a).

The convolution of this profile with the ideal etalon response function is:

YΠ(δ) = SΠ ∗ Y =

∞
∫

−∞

SΠ(y)Y (δ − y)dy

=
1−R
1 +R

[

1 + 2
∞
∑

k=1

Rksinc(kW/2) cos kδ

]

, (5.17)

where sinc x = sin x/x. A top hat function can approximate a source resulting from

reflecting broadband light from a dielectric mirror with a large number of dielectric

layers. The transmission of such a profile through an ideal etalon as a function of δ

can be determined using Eq. (5.17) as is shown in Fig. 5.4(b).

Upon inspection of the analytic solutions of these convolutions, the reader can
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Figure 5.4: (a) Top hat source profiles and (b) corresponding etalon responses for R = 0.995.

identify the following general form for an output Y ′(δ) from an incident profile written

in terms of phase angle, S(δ):

Y ′(δ) = S ∗ Y =
1−R
1 +R

[

1 + 2
∞
∑

k=1

Rksk cos kδ

]

, (5.18)

where sk is the Fourier transform of S(δ), following from the convolution theorem as

described by Boas in [36]. As the width of the source is increased from a monochro-

matic line to a finite width profile, the etalon response is broadened while fringe

maxima decrease and minima increase towards a flat transmission function:

Y ′white =
1−R
1 +R

, (5.19)

for ‘white’ or very broad-band light. Some examples of this mapped onto frequency

space using realistic linewidth values are illustrated in Fig. 5.5 for Gaussian and top

hat source profiles. Regardless of their functional forms, both demonstrate the same

broadening behaviour toward the Y ′white limit as the FWHM approaches and exceeds

the free spectral range of the etalon.
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Figure 5.5: (a) Gaussian and (c) top hat source profiles and (b) & (d) corresponding
ideal etalon responses for R = 0.995 and ∆ν̃fsr = 10 cm−1. For FWHMs & ∆ν̃fsr, the
transmission approaches Ywhite.

5.1.3 Non-ideal etalons

Two aspects of a Fabry-Perot etalon that further broaden its fringe pattern are rough

or non-parallel reflective surfaces. If these imperfections can be modeled by Gaus-

sian, Lorentzian or top hat profiles, the convolutions above can be used to include

their effects on the etalon response. Provided any microscopic imperfections in flat-

ness are randomly distributed and the resulting variation in etalon surface spacing is

much smaller than d, a single etalon can be treated as a collection of ideal etalons

with a normal distribution of surface spacings. Under these assumptions, flatness
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imperfections can be modelled by a Gaussian profile DF (δ) with FWHM ∆δF :

DF (δ) =
1√
π F
e−δ

2/F 2

, ∆δF = 2
√

ln 2F. (5.20)

An expression for F for a particular variation in surface spacing due to roughness,

∆dF , can be found by differentiating Eq. (5.1) with respect to d, substituting the

expression for ∆δF from Eq. (5.20) and solving for F :

F =
2πν̃n cos θ√

ln 2
∆dF . (5.21)

Additionally, provided the variation in etalon surface spacing due to an error in par-

allelism across the illuminated area is much smaller than d, spherically-curved or

non-parallel surfaces due to imperfect polishing of the etalon slab can be treated as

a collection of ideal etalons with a flat distribution of surface spacings. This type of

variation can be expressed by a top hat function [37]:

DP (δ) =
1

P
ΠP (δ), ΠP (δ) =



















1, |δ| ≤ P/2

0, |δ| > P/2
(5.22)

where P is the width in δ-space of the top hat profile representing the curvature/non-

parallel aspect of the etalon surfaces. An expression for P for a particular variation

in surface spacings due to non-parallel surfaces, ∆dp, is given by:

P = 4πnν̃ cos θ∆dP . (5.23)

For example, the response of a non-ideal etalon (assumed to have rough, denoted by
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F , and non-parallel, denoted by P , surfaces) to an input source with a Lorentzian

intensity profile, SL(δ) is given by the convolution of the appropriate profiles with

the etalon transmission function, (Y (δ)):

T (δ) = SL ∗DF ∗DP ∗ Y

=
1−R
1 +R

[

1 + 2
∞
∑

k=1

(

Re−L
)k
e−k

2F 2/4sinc(kP/2) cos kδ

]

.
(5.24)

The broadening effects of a non-monochromatic source together with surface imper-

fections reduce the effective finesse of the etalon and therefore degrade the resolution

and visibility of fringes. These effects can be minimized by making R as close to 1 as

possible but nonetheless these effects limit the physically achievable resolution and

fringe visibility. It is important to note that fringe broadening associated with a non-

monochromatic light source does not apply to absorption features within the source

profile. The ability to resolve these features is, however, affected by the broadening

associated with etalon imperfections.

5.1.4 Analysis of fringe visibility

One measure of fringe contrast for an ideal etalon analyzing monochromatic light

which is independent of the average intensity of the light is the visibility, V :

V ≡ Ymax − Ymin

Ymax + Ymin

=
2R

1 +R2
, (5.25)

which is a value that can vary from 0 to 1 and is enhanced for larger values of

Ymax/Ymin. For an ideal etalon analyzing non-monochromatic light, YG(δ), for exam-

ple, must be evaluated at δ = 0 and δ = π to obtain Ymax and Ymin, respectively. The
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dependence of V on the source width for a particular set of instrumental parameters

for an ideal etalon is illustrated in Fig. 5.6 for various source profiles.
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Figure 5.6: Visibility of fringes produced by an ideal etalon with various source profiles of
varying widths given by their FWHM value relative to the free spectral range for R = 0.995
and ∆ν̃fsr = 10 cm−1. The non-zero visibility of the top hat profile for FWHMs > ∆ν̃fsr
results from a distinct type of fringe pattern due to the discrete nature of the leakage of
light intensity into adjacent interference orders.

5.2 Application to absorption spectroscopy

Fabry-Perot spectroscopy is commonly used for high-resolution studies such as record-

ing hyperfine emission spectra and low-resolution spectroscopy of very faint cosmic

sources. We wish to investigate its applicability for measuring absorption spectra of

human breath samples containing water and ethanol vapour. The feasibility of this

application hinges on: a) whether the spectral resolution of the device is sufficient

to resolve absorption features in the wavenumber region of interest and b) whether

the intensity resolution is sufficient to resolve small changes in the relative absorption
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intensity of these features.

If the incident light source contains narrow absorption features, these can be

spectrally resolved with the same resolution as emission peaks [25] although with

significantly reduced intensity visibility. We have modelled the response of an ideal,

and non-ideal, Fabry-Perot spectrometer with non-monochromatic sources of varying

widths containing absorption features to determine how the resulting visibility de-

pends on the source width and the width and depth of the absorption features. The

motivation for this was to determine whether small changes in the relative depths

of water vapour absorption features corresponding to the presence of different levels

of ethanol concentration could be resolved by a compact angle-resolved Fabry-Perot

optical spectrum analyzer [38]. Although Fabry-Perot spectroscopy has not been

widely-used for absorption spectroscopy in the past, the sensitivity of modern detec-

tors could indeed permit high enough resolution in intensity for detecting the presence

of ethanol.
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Figure 5.7: (a) Gaussian source profiles of varying widths given by FWHM/2π containing
a 0.25 cm−1 FWHM absorption feature with 50% transmittance. (b) The resulting fringe
pattern of an ideal etalon with R = 0.995 with source profiles shown in (a).
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Figure 5.8: (a) Top hat source profiles of varying widths given by FWHM/2π containing
a 0.25 cm−1 FWHM absorption feature with 50% transmittance. (b) The resulting fringe
pattern of an ideal etalon with R = 0.995 with source profiles shown in (a). The ‘step’ in
transmission near δ = ±π for a top hat source with FHWM/2π = 1.2 occurs due to the
discrete nature of the leakage of light intensity into adjacent interference orders.

A single absorption feature with a Lorentzian lineshape was introduced with as-

sumed Gaussian and top hat source profiles using Beer’s law (see section 5.3.1 below

for details), that is, using Eq. (5.14) in Eq. (5.28) with I0 as a function of δ taking

the form of Eqs. (5.12) and (5.16), respectively. Convolutions of source profiles con-

taining an absorption feature with the etalon response were performed numerically

as analytic solutions were not readily available. For example, the transmission of an

ideal etalon with a Gaussian source profile containing an absorption feature, Tα(δ),

as shown in Fig. 5.7(b) for various source widths, is given by:

Tα(δ) = SG e
−aSL ∗ Y =

∞
∫

−∞

SG(y)e−aSL(y)Y (δ − y)dy, (5.26)

where the value of the prefactor, a, was chosen such that the incident intensity

dropped to 50% of the peak value of SG at the centre of the absorption feature

in Fig. 5.7(a). Top hat source profiles containing a Lorentzian absorption feature and
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the corresponding ideal etalon responses were modelled in a similar fashion and are

shown in Fig. 5.8.

The transmission of a non-ideal etalon with rough surfaces with a Gaussian inci-

dent source containing a Lorentzian absorption feature, T ′α(δ), is given by:

T ′α(δ) = DG ∗ SG e−aSL ∗ Y =

∞
∫

−∞

DG(z)SG(y − z)e−aSL(y−z)Y (δ − y)dydz. (5.27)

The broadening effects due to rough etalon surfaces on the resulting fringe pattern

are demonstrated in Fig. 5.10 for different source widths and different amounts of

surface roughness.

5.2.1 Visibility of absorption features

The visibility of an absorption feature within a source profile is not such a straight-

forward calculation to do as the phase angle corresponding to the maximum trans-

mission is not obvious a priori. The position of Tα,max depends on the FWHM of

the absorption feature relative to that of the source and also on the lineshape of the

source. In addition to this, the relevant minimum is at the centre of the absorption

feature and not necessarily the global minimum at δ = π.

The visibility of absorption features depends primarily on the width of the source

relative to the free spectral range as shown in Fig. 5.9. Reducing the source width

improves the visibility but the spectral window that can be investigated is conse-

quently also decreased. The source width must therefore be wide enough to capture

a large enough spectral window to investigate ratios of absorption intensities but

narrow enough to ensure sufficient visibility to detect changes in these ratios.
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Figure 5.9: Visibility of absorption features within fringes produced by an ideal etalon with
two source profiles of varying widths given by their FWHM value relative to the free spectral
range for R = 0.995 and ∆ν̃fsr = 10 cm−1. The source profiles contain a 0.25 cm−1 FWHM
absorption feature with 50% transmittance.

The standard approach to avoiding overlapping orders in one free spectral range is

to use a monochromator or grating spectrometer to send only one order with a spectral

width comparable to the free spectral range to the etalon [28]. We are considering

a compact, less expensive approach involving a narrow-band light source such as an

LED with a band-pass filter. Commercially available Bragg-grating reflection filters

with very narrow pass-bands could be used for this purpose [39].

Absorption feature visibility also depends on broadening mechanisms such as de-

creased reflectivity and etalon imperfections – in other words, the effective finesse.

These compounding effects are qualitatively illustrated in Fig. 5.10 for source widths

much less than the free spectral range with R = 0.99 and random flatness imperfec-

tions << d.
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Figure 5.10: Gaussian source profiles with (a) 1.0 cm−1 (c) 0.6 cm−1 and (e) 0.4 cm−1

FWHMs containing a 0.25 cm−1 FWHM absorption feature with 15% transmittance. (b),
(d) & (f) Resulting fringe patterns of ideal and non-ideal etalons with surface roughness
given by dF corresponding to the input profiles in (a), (c) & (e), respectively, for R = 0.99
and ∆ν̃fsr = 10 cm−1. Source profiles and etalon responses are normalized to unit area for
comparison.



CHAPTER 5. FABRY-PEROT ABSORPTION SPECTROSCOPY 59

5.3 Quantitative spectroscopy of ethanol

Molecules can absorb energy in the form of electromagnetic radiation that is resonant

with transitions between rovibronic states, i.e. when the photon energy (which is

proportional to the frequency of the electromagnetic wave) is equal to the energy

difference between two states. The dominant mechanism that allows the molecule to

absorb energy is the interaction between the electric dipole moment produced by the

configuration of charged particles that the molecule is composed of and the oscillating

electric field of the electromagnetic wave. Upon absorbing a photon, the molecule is

excited to the upper (higher) energy state where it remains until it decays back to

a lower energy state through collisions or via spontaneous or stimulated emission by

emitting a photon of the same energy. Each molecule has a unique set of energy states

based on its composition (number and types of component atoms), structure (number

and types of inter-atomic bonds) and configuration (spatial orientation of atoms and

bonds) and thus can support a unique set of transitions. Each of these transitions

has a strength associated with it depending on the probability of that transition, and

the total set of transition frequencies and associated strengths at a given temperature

provides a unique fingerprint or spectrum of that molecular species.

Spectroscopy is the study of atomic and molecular spectra and therefore the study

of the interaction of light with matter. Different regions of the electromagnetic spec-

trum are generally associated with different types of interactions. Here, we concen-

trate on infrared radiation (33.3 cm−1 to 12 800 cm−1; 300µm to 780 nm) which tends

to drive vibrational transitions in matter.
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5.3.1 Beer’s Law

Beer’s law describes the light intensity transmitted through an absorbing material as

a function of wavenumber:

I(ν̃) = I0e
−α(ν̃)L, (5.28)

where I0 is the incident light intensity at ν̃, I(ν̃) is the transmitted intensity, α(ν̃)

is the absorption coefficient at that wavenumber and L is the path length of the

light in the absorbing material. The ratio of transmitted to incident light intensity,

I/I0, is known as the transmittance while ln(I0/I) is the absorbance. The absorption

coefficient of a particular transition in a species from lower state η to upper state

η′ at temperature T and pressure p, αηη′(ν̃, T, p) [in cm−1], is the product of the

line intensity, Sηη′(T ) [in cm−1/(molecule cm−2)], and lineshape, g(ν̃ − ν̃ηη′ , T, p) [in

cm−1], of that particular transition and the concentration, N [in molecules/cm3], of

absorbing molecules:

αηη′(ν̃, T, p) = Sηη′(T )g(ν̃ − ν̃ηη′ , T, p)N. (5.29)

This can also be expressed in terms of the per molecule absorption, or absorption

cross-section, of a particular transition, σηη′(ν̃, T, p) [in cm2/molecule], given by:

σηη′(ν̃, T, p) = Sηη′(T )g(ν̃ − ν̃ηη′ , T, p). (5.30)

Therefore, measurement of the absorbance at a particular frequency of a fixed path

length of molecules held at a fixed temperature and pressure allows one to determine

the concentration if the total absorption cross-section at that frequency is known.
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This is the basis of quantitative absorption spectroscopy.

Line intensities tabulated at a reference temperature in databases such as HI-

TRAN [40] are derived from experimental data or from ab initio calculations. The

lineshape of a single transition is in general a Voigt profile resulting from the convo-

lution of Lorentzian and Gaussian profiles due to homogeneous and inhomogeneous

broadening mechanisms such as pressure and Doppler broadening, respectively. In

lower-atmospheric studies, pressure broadening dominates so a Lorentzian profile is

assumed. The Lorentzian half-maximum half-widths at standard temperature and

pressure are also tabulated in HITRAN along with the lower state energies. With

this information and an assumed concentration the spectrum of a molecular species

sample can be simulated by plotting the total absorption coefficient associated with

all transitions as a function of wavenumber:

α(ν̃, T, p) =
∑

ηη′
αηη′(ν̃, T, p). (5.31)

5.3.2 Ethanol vapour spectrum: O-H stretch overtones

The overtones of the O-H stretch vibration of many organic molecules have been

extensively studied by atmospheric chemists [41]. Ethanol (EtOH; CH3–CH2–OH) is

a large, floppy molecule and therefore has broad vibrational bands in its spectrum.

Rotation about its CO bond leads to two rotational conformers: trans- when the

methyl group (CH3–) is across from the OH bond and gauche- when the OH bond is

across from one of the CH bonds of the methylene group (–CH2–).

Theoretical results based on density functional theory (DFT) calculations [42] and

experimental results using photoacoutic spectroscopy (PAS) [43] show that the O-H
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stretch vibration overtones of trans-ethanol have larger transition energies and slightly

stronger absorption intensities than those of the gauche-conformer. The trans-ethanol

O-H overtones also show a strong Q-branch peak [43] in experimental spectra. This

absorption feature is desirable for quantitative spectroscopy and detection due to its

relative sharpness compared to the other broader rotational branches (P- and R-).

In particular, the second overtone centred at ∼10 500 cm−1 lies in the near-IR region

(3333 cm−1 to 12 800 cm−1; 3µm to 780 nm) where affordable sources and detectors

exist. Integrated absorption intensities and centres of entire O-H stretch overtone

bands have been calculated from FTIR and near-IR spectra in [44] for ethanol and

similar species containing an isolated O-H bond. These results, along with an exper-

imental spectrum from [43] [shown in Fig. 5.11(a)] have been used to estimate the

absorption cross-section of trans-ethanol’s Q-branch (≈10 515 cm−1; ≈951 nm) in the

second O-H stretch overtone band.
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Figure 5.11: (a) Experimental absorption spectrum of vOH3 vibrational band in EtOH
from [43]. (b) Estimated absorption cross-section using the value I03 = 2.24 × 10−20

cm/molecule from [44] for the band intensity of vOH3 in EtOH.

The absorption coefficient includes the concentration, N , of the absorbing species.
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The number density of ethanol molecules in a human breath sample is related to the

breath alcohol content (BrAC) in milligrams per litre (mg/l) of breath by Avagadro’s

number. BrAC is related to blood alcohol content (BAC) through the accepted ratio

of 1 : 2100 in Canada and the US. BAC units are defined such that 0.01% BAC =

100 mg/l blood. For simplicity the notation 1 ‘BAC’ ≡ 0.001% BAC will be used

henceforth. Legal limits of consumed alcohol for motor vehicle operators are given in

terms of BAC. The legal limit in Canada of 50 BAC corresponds to 127 ppm (0.238

mg/l) of ethanol in expired breath at standard temperature and pressure while an

anticipated minimum detectable amount of 4 BAC similarly corresponds to 10 ppm

(0.019 mg/l). In what follows, the absorption coefficient of ethanol has been estimated

at these concentrations (Section 5.3.4).

5.3.3 Water vapour spectrum simulated from HITRAN

Water (H2O) is a light, rigid molecule and in its vapour state it has a complex

spectrum with more than 64 000 tabulated absorption lines ranging from the visible

to the microwave region of the electromagnetic spectrum. This data is compiled at

a reference temperature (296 K) and pressure (1 atm) in the HITRAN database

along with that from forty other molecular species commonly found in the earth’s

atmosphere. The water vapour spectrum in the region of ethanol’s Q-branch of the

first and second O-H stretch overtones at 7170 cm−1 and 10 515 cm−1 (1.395µm and

951 nm, respectively) has been simulated using the most recent (2009) edition of the

HITRAN database [40]. Definitions of the parameters in the database and their

respective units as well as formulae for temperature and pressure corrections to the

absorption lines are given in [45].
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A human breath sample is assumed to be saturated with water vapour [46]. This

means that the breath sample has 100% relative humidity or equivalently that the

partial pressure of the water vapour is equal to its saturated vapour pressure at the

exhaled temperature. The saturated vapour pressure of a substance is the pressure of

the vapour phase when in equilibrium with its non-vapour phases and is dependent

on temperature. Assuming atmospheric pressure (1 atm = 101.325 kPa) and 100%

humidity inside the lungs, the partial pressure of water vapour at the typical tem-

perature of exhaled human breath (37 °C [46]), is approximately 6280 Pa [47], from

which a concentration of water molecules can be estimated through the ideal gas law:

N

V
=
P

kBT
= 1.47× 1018 cm−3. (5.32)

The absorption coefficient, α(ν̃), of water vapour under these conditions has been

calculated in the regions containing the first and second overtones of ethanol’s O-H

stretch vibration. While similar numbers of water absorption lines are tabulated in

these regions, the strongest line in the first overtone region is roughly two orders of

magnitude greater than the strongest line in the second overtone region. These tran-

sitions are overtones of the symmetric and antisymmetric stretch of the O-H bonds

(with fundamental transitions at 3657 cm−1 and 3756 cm−1, respectively [48]). To

quantify the integrated absorption intensity of water’s O-H stretch overtones com-

pared to that of ethanol, ratios of band intensities of the fundamental to the over-

tone bands of these transitions were calculated and are shown with those of ethanol

from [44] in Fig. 5.12. This enabled determination of how the sensitivity to ethanol

concentration would change between overtone regions. The band intensities of over-

tones of water drop off more quickly than those of ethanol owing to the difference in
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the anharmonicity of the O-H stretch vibrations of these two molecules. This means

that although the integrated band intensity of ethanol is lower in the second overtone,

its relative band intensity is greater than that of water and therefore the composite

spectrum is more sensitive to ethanol concentration in the second overtone than the

first [48].
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Figure 5.12: Relative O–H vibrational band intensities of EtOH (from [44]) and H2O (cal-
culated from HITRAN). Relative band intensities are obtained by dividing the fundamental
band intensity by that of the overtones.

5.3.4 Proposed ethanol detection scheme

An optical approach to detecting concentrations of ethanol in a human breath sam-

ple relies on measuring changes in the absorption spectrum of the breath sample.

Usually, calculating species concentration from measured absorption peaks directly

requires careful calibration of absolute incident and transmitted intensities to de-

tected voltages, and accessible spectral regions free from other absorbing species.

Unfortunately, human breath inevitably contains water vapour which absorbs light
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throughout much of the same visible and IR regions. Given this, our research group

has proposed a detection scheme that relies on the presence of water absorption and

is self-calibrating.
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Figure 5.13: Simulated absorption coefficient of EtOH and H2O vapour at 37 ◦C, 1 atm,
100% humidity for different concentrations of EtOH using HITRAN and experimental data
from [43]. The estimated absorption coefficient of EtOH alone is scaled for reference.

Water vapour absorption features are orders of magnitude narrower than even the

narrowest of ethanol features (which for the O-H stretch overtones is the Q-branch

peak of the trans-conformer). The absorption in the vicinity of a water vapour peak

that lies within the Q-branch will increase significantly with ethanol concentration

compared to an equally strong water peak away from the Q-branch (see Fig. 5.13).

Therefore, the relative heights within the spectrum itself can be correlated with a spe-

cific concentration of ethanol in the sample if the absorption cross-section of ethanol
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Table 5.1: Simulated values for the absorption coefficient of human breath samples at
37 ◦C, 1 atm and 100% humidity containing different concentrations of ethanol vapour at
the positions of water peaks at 10 516.7 cm−1 and 10 514.9 cm−1 and ratios between these
values. The per-cent change in each ratio compared to the ratio in the absorption coefficient
of water vapour alone at these positions is also given.

BAC α1 = α(10 516.7 cm−1) α2 = α(10 514.9 cm−1) α1/α2 % change
0
1
4
10
50
80

1.974 80× 10−6

1.984 99× 10−6

2.015 57× 10−6

2.076 71× 10−6

2.484 37× 10−6

2.790 11× 10−6

2.163 38× 10−6

2.179 75× 10−6

2.228 84× 10−6

2.327 02× 10−6

2.981 59× 10−6

3.472 51× 10−6

0.912830
0.910653
0.904312
0.892434
0.833237
0.803486

0.00
0.24
0.93
2.23
8.72
11.97

at those spectral positions and the absorbing path length are known. Since the mea-

surement is a relative one, absolute incident and transmitted light intensities are not

necessary for determining concentration and therefore calibration of photodetectors

is not required.

As an example, ratios in the simulated absorption coefficient of a human breath

sample saturated with water vapour at 37 ◦C and 1 atm containing different concen-

trations of ethanol vapour were calculated and are shown in Table 5.1. These ratios

were calculated between the positions of comparable water peaks at 10 514.9 cm−1

and 10 516.7 cm−1 lying within and away from the Q-branch of trans-ethanol’s second

O-H stretch overtone, respectively.

In practice, however, ratios in the transmittance between these spectral positions

would be measured. As a second example, ratios in the transmittance for 1 m,

36 m and 76 m absorbing path lengths (available in compact multi-pass cells [49])

were calculated and are shown in Table 5.2. As can be seen in the table, ratios in

transmittance are considerably less sensitive to ethanol concentration than the cor-

responding ratios in the absorption coefficient. This suggests that the absorption
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Table 5.2: Ratios in the simulated transmittance spectrum of human breath samples at
37 ◦C, 1 atm and 100% humidity containing different concentrations of ethanol vapour.
Ratios are between positions of water peaks at 10 516.7 cm−1 and 10 514.9 cm−1 for 1 m,
36 m and 76 m absorption path lengths. The per-cent change in each ratio compared to
the ratio in the transmittance of water vapour alone is also given.

BAC L = 1 m % change L = 36 m % change L = 76 m % change
0
1
4
10
50
80

0.999981
0.999981
0.999979
0.999975
0.999950
0.999932

0.00000
0.00006
0.00025
0.00062
0.00309
0.00494

0.999321
0.999299
0.999233
0.999099
0.998212
0.997546

0.000
0.002
0.009
0.022
0.111
0.178

0.998568
0.998521
0.998380
0.998099
0.996228
0.994827

0.000
0.005
0.019
0.047
0.234
0.375

cross-section of ethanol in this region may not be of a sufficient strength for accurate

quantitative detection of ethanol concentration using an optical approach. Further-

more, the success of this approach ultimately depends on the sensitivity acheiveable

by silicon photodetectors and the effect of increasing path length in multi-pass cells

on the signal-to-noise ratio of the detected signal.

5.4 Breathalyser design concept

The main criteria to be fulfilled for a portable optical breathalyser unit are robustness,

longevity, inexpensive components and capability to detect ethanol concentrations

down to 4 BAC with 1 BAC resolution. A robust design means that the device should

have no moving parts since its alignments could easily be affected if the unit is dropped

or struck. An angle-resolved etalon configuration would satisfy this criterion since

incident light rays with a spread of angles (i.e. θ is the ‘scannable’ parameter) can be

produced with a fixed lens. LED light sources are known to be quite stable and long-

lasting and are available in many ‘colours’ throughout the IR spectrum. Choosing the
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region of ethanol’s second O-H stretch overtone near 10 515 cm−1 (951 nm) enables

the use of inexpensive silicon photodetectors. Furthermore, a silicon-based CMOS

megapixel image sensor is compatible with the angle-resolved etalon configuration.

Multi-pass absorption cells offer tens to hundreds of meters of effective absorption

path length in a small volume [50], allowing for significant absorption in a portable

unit with the aim of providing fine resolution in quantitative ethanol detection.

The optical path of the proposed design would be as follows: a collimated beam

of ultra-narrow band light produced by a high-power near-IR LED with a central

wavelength of 950 nm and a reflecting Bragg grating band-pass filter with wavenum-

ber bandwidth would enter a multi-pass absorption cell containing the breath sample.

Upon exiting the cell, the light would be focused at a position just in front of the

etalon by a fixed lens. Upon leaving the etalon, the diverging light rays would be

collimated by a second lens such that a full fringe would fill the active area of the

CMOS image sensor in a manner according to [38]. The well known positions of wa-

ter vapour absorption peaks would be used to calibrate the frequency-space Fourier

transform of the spatial fringe pattern recorded by the image sensor. Ratios of trans-

mitted intensities between spectral positions most sensitive to ethanol concentration

would subsequently be calculated allowing determination of the ethanol concentration

following calibration of the multi-pass absorbing path length and precise knowledge

of ethanol’s absorption cross-section at these positions.



Chapter 6

Conclusion

In this thesis, two applications involving precision measurements of light from semi-

conductor light sources were investigated. In Part I, the rotating quarter-wave plate

method, a well-known technique for measuring the polarization state of light, was

refined and an InGaAsP laser diode was employed for experimental testing. A po-

larimeter in which each of the retarder and linear polarizer could be rotated by 180◦

about a vertical axis allowed the reflection of the optic axes in the horizonatal refer-

ence axis. Using linearly polarized incident light, a set of transmitted intensities was

recorded for each of the four orientations (called cases herein) of the optics due to

this rotation, from which Stokes vectors were calculated for a range of polarimeter

parameters, β0, ∆ and γ. An additional parameter, φ, was included to account for the

possible misalignment of the vertical rotation axes of the two optics. The set of pa-

rameters that generated the minimum least squares error between the derived Stokes

vectors for the four cases and a derived degree of polarization consistent with that of

fully-polarized incident light best characterized the polarimeter. This was confirmed

70
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by reporting Stokes vectors consistent with that of horizontal linearly polarized in-

cident light obtained from additional test data sets following nine calibrations using

three different retardances and three different intentional misalignments.

In Part II, a theoretical investigation of the Fabry-Perot interferometer and its

application to quantitative absorption spectroscopy was conducted. The transmission

functions of ideal and non-ideal etalons with non-monochromatic incident light were

modelled to study the effects of possible surface imperfections and finite linewidth

sources of different lineshapes on the visibility of interference fringes. Source profiles

with steeper fall-off at the edges, such as a top hat profile, were found to have near

unity visibility for widths less than the free spectral range due to less leakage of light

intensity into adjacent orders. The resolution of an absorption feature within the

source profile was then confirmed to be independent of the source width although

its visibility decreased as the source width approached and exceeded the free spec-

tral range. Etalon surface imperfections were found to decrease both the resolution

and visibility of absorption features. These results were discussed in the context of

a possible detection scenario involving samples of ethanol and water vapours. The

second overtone of ethanol’s O-H stretch vibration was studied due to its accessibility

to silicon-based detectors. The water vapour spectrum in this region was simulated

from HITRAN and a possible ethanol detection scheme involving changes in relative

absorption in the vicinity of water lines with ethanol concentration was considered.

This investigation has provided the basis for possible further research into the imple-

mentation of such a scheme within a portable device employing an LED light source

due to the benefit it would bring for this application.
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Convolution integrals

Gaussian
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where [51, 52]:

1− R2

1− 2R cos y +R2
= 1 + 2

∞
∑

k=1

Rk cos ky, R2 < 1, (A.2)
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0
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2
e−k

2G2/4, G > 0. (A.3)

Lorentzian
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where [53]:
∞
∫

0
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L2 + y2
dy =

π

2L
e−kL, L > 0; k ≥ 0. (A.5)
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Top hat
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