Final Exam: Tuesday Dec 17, 2024Name:Allowed: Formula sheet (given), calculator, 3 hours

PART 1 – answer questions 1-10 in your exam booklet and then use your scratch card: <u>One</u> scratch = 100%; <u>two</u> scratches = 50%; <u>three</u> scratches = 25% (part 1 total is 60%) PART 2 – answer any two questions in your exam booklet (each of these questions is worth 20%)

Qu's 1-2) Two monochromatic light beams, beam 1 and beam 2, have electric fields of the following form:

Beam 1: $\vec{\mathbf{E}}_1(\vec{\mathbf{r}},t) = E_0 \cos(kz - \omega t)\hat{\mathbf{y}}$

Beam 2: $\vec{\mathbf{E}}_{2}(\vec{\mathbf{r}},t) = E_{0}\cos(kz-\omega t)\hat{\mathbf{x}} + E_{0}\cos(kz-\omega t + \pi/2)\hat{\mathbf{y}}$

1) Which of the following statements best describes the polarizations of these two beams?

A. Beam 1 is linearly polarized along the *z*-axis, and beam 2 is left circular polarized light (electric field rotates counterclockwise when looking into the beam).

B. Beam 1 is linearly polarized along the *y*-axis, and beam 2 is right circular polarized light (electric field rotates clockwise when looking into the beam).

C. Beam 1 is linearly polarized along the *y*-axis, and beam 2 is left circular polarized light (electric field rotates counterclockwise when looking into the beam).

D. Beam 1 is linearly polarized along the *z*-axis, and beam 2 is left elliptical polarized light (electric field rotates counterclockwise when looking into the beam).

E. Beam 1 is linearly polarized along the *y*-axis, and beam 2 is right elliptical polarized light (electric field rotates clockwise when looking into the beam).

2) Which of the following are the intensities of these two beams?

A.
$$I_{1} = \frac{1}{2} \varepsilon_{0} c E_{0}^{2}$$

$$I_{1} = \frac{1}{2} \varepsilon_{0} c E_{0}^{2}$$

$$I_{1} = \varepsilon_{0} c E_{0}^{2}$$

$$I_{1} = \varepsilon_{0} c E_{0}^{2}$$

$$I_{2} = \varepsilon_{0} c E_{0}^{2}$$

$$I_{2} = \frac{1}{2} \varepsilon_{0} c E_{0}^{2}$$

$$I_{2} = \frac{1}{2} \varepsilon_{0} c E_{0}^{2}$$

$$I_{2} = \frac{1}{2} \varepsilon_{0} c E_{0}^{2}$$

$$I_{2} = \varepsilon_{0} c E_{0}^{2}$$

Trent: PHYS 4240H - Modern Optics: 2024-2025

Qu's 3-5) Figures 6.7(a) and (b) from the course textbook are shown on the right. Figure 6.7(a) shows the two cosine factors of a resultant beat electric field of light at some location $x = x_0$:

$$E_R(x_0,t) = 2E_0 \cos(k_p x_0 - \omega_p t) \cos(k_g x_0 - \omega_g t).$$

Figure 6.7(b) shows (solid line) $E_R(x_0,t)$.

We shall assume that both plots cover the time duration from t = 0 fs to t = 30 fs.

3) Using Figure 6.7(a), which of the following are ω_p and ω_g ?

A.
$$\omega_{p} = 500 \text{ THz}$$

 $\omega_{g} = 50 \text{ THz}$
B. $\omega_{p} = 10^{12} \pi \text{ s}^{-1}$
 $\omega_{g} = 10^{11} \pi \text{ s}^{-1}$
C. $\omega_{p} = 4 \times 10^{12} \pi \text{ s}^{-1}$
 $\omega_{g} = 4 \times 10^{11} \pi \text{ s}^{-1}$
D. $\omega_{p} = 10^{15} \pi \text{ s}^{-1}$
 $\omega_{g} = 10^{14} \pi \text{ s}^{-1}$
E. $\omega_{p} = 2 \times 10^{15} \pi \text{ s}^{-1}$
 $\omega_{g} = 2 \times 10^{14} \pi \text{ s}^{-1}$

4) What therefore are the frequencies v_1 and v_2 of the two incoming waves of form $\cos(kx - 2\pi\nu t)$ that superpose to create the resultant electric field, $E_R(x,t)$?

A.
$$v_1 = 600 \text{ THz}$$

 $v_2 = 400 \text{ THz}$
B. $v_1 = 550 \text{ THz}$
 $v_2 = 450 \text{ THz}$
C. $v_1 = 500 \text{ THz}$
 $v_2 = 50 \text{ THz}$
D. $v_1 = 275 \text{ THz}$
 $v_2 = 225 \text{ THz}$
E. $v_1 = 55 \text{ THz}$
 $v_2 = 450 \text{ THz}$

5) What beat frequency would be recorded from measuring the resultant field with a photodetector?

A.
$$v_{\rm b} = 200 \text{ THz}$$
 B. $v_{\rm b} = 50 \text{ THz}$ **C.** $v_{\rm b} = 10 \text{ THz}$ **D.** $v_{\rm b} = 100 \text{ THz}$ **E.** $v_{\rm b} = 450 \text{ THz}$

Trent: PHYS 4240H – Modern Optics: 2024-2025

Qu's 6-8) The S_3 component of a Stokes vector can be found from the difference in intensity transmitted by two devices. We can therefore write $S_3 \equiv I_{\text{device 1}} - I_{\text{device 2}}$.

6) Which of the following best describes 'device 1' and 'device 2', which are used to provide S_3 ?

A. Device 1 passes without loss right-circular polarized light, and device 2 passes without loss left-circular polarized light.

B. Device 1 passes without loss horizontal linearly polarized light, and device 2 passes without loss vertical linearly polarized light.

C. Device 1 passes without loss right-circular polarized light, and device 2 passes without loss vertical linearly polarized light.

D. Device 1 passes without loss linearly polarized light at $+45^{\circ}$, and device 2 passes without loss linearly polarized light at -45° .

E. Device 1 passes without loss left-circular polarized light, and device 2 passes without loss linearly polarized light at -45° .

7) By operating on the Jones vector of the light that we expect device 1 to pass without loss (so with no loss of intensity), which of the following Jones matrix expressions best represents device 1?

A.
$$\mathbf{M}_{\text{device 1}} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -i \end{bmatrix}$$

B. $\mathbf{M}_{\text{device 1}} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$
C. $\mathbf{M}_{\text{device 1}} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
D. $\mathbf{M}_{\text{device 1}} = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$
E. $\mathbf{M}_{\text{device 1}} = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

8) The *Mueller matrix* for device 1 is given by:

$$\mathfrak{M}_{\text{device 1}} = \frac{1}{2} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

What would be the transmittance $(T = I_{out} / I_{in})$ of device 1 when illuminated by light with Stokes vector [1,0,0,1]?

E. 100%

Trent: PHYS 4240H - Modern Optics: 2024-2025

Qu's 9-10) A set of ideal linear polarizers are placed in succession and illuminated by unpolarized light. Suppose the intensity of the incoming light is I_0 .

9) What is the intensity of the outgoing light if <u>three</u> linear polarizers are employed in succession, at angles 0° , 45° and 90° to the horizontal?

A. $0.40I_0$ **B.** $0.25I_0$ **C.** $0.33I_0$ **D.** $0.125I_0$ **E.** $0.15I_0$

10) What is the intensity of the outgoing light if <u>seven</u> linear polarizers are employed in succession, at angles 0° , 15° , 30° , 45° , 60° , 75° and 90° to the horizontal?

A.
$$0.40I_0$$
 B. $0.25I_0$ **C.** $0.33I_0$ **D.** $0.125I_0$ **E.** $0.15I_0$

PART II – answer two of the following questions in your exam booklet

11. Consider a 1 km parabolic GRIN fiber with a peak core refractive index of 1.46 and a cladding refractive index of 1.44.

a) Briefly explain what is meant by a *parabolic GRIN fiber*, and why it serves its desired purpose.

b) Calculate the delay due to modal dispersion in this fiber.

c) Calculate this delay for a step-index fiber with $n_1 = 1.46$ and $n_2 = 1.44$. By what factor is this improved with the GRIN fiber?

12. A simple model of a cylindrical optical fiber is shown on the right. This fiber has a refractive index *n*, and is entirely surrounded by air.

a) Find an expression in terms of only *n* for $\sin(\theta_{\max})$, where θ_{\max} is the largest angle of incidence that results in light staying fully within the fiber.

b) Derive the formula for the approximate number of skips that light entering with an arbitrary $\theta < \theta_{\max}$ will make in this fiber of length *L* and diameter *d*, assuming this ray remains in a plane containing the axis of the fibre (i.e. it is a *meridional ray*). Find this value for $\theta = \theta_{\max} / 2$ for n = 1.4, L = 2 m and $d = 100 \ \mu\text{m}$.

Trent: PHYS 4240H – Modern Optics: 2024-2025

13. Consider a laser diode of the type shown below:

a) Given that the band gap of intrinsic GaAs is 1.424 eV, what wavelength would be emitted from intrinsic GaAs?

b) Briefly describe what is meant by "p GaAs" in this diagram.

c) Describe the shape of the emerging beam, find the far-field half-angle divergence angles(s) of this beam in degrees, and find the approximate total dimensions of this beam 3 m from the laser.

d) The refractive index of GaAs at the wavelength emitted by this laser is approximately 3.67. Approximately how many half-wavelengths of laser light would fit within the cavity formed by the end faces of this laser?

14. An erbium fiber laser has a refractive index of 1.46 and an output wavelength of 1550 nm. To a reasonable approximation it can be viewed as a three-level laser system, comprising levels $|1\rangle$, $|2\rangle$ and $|3\rangle$, with upper laser level $|2\rangle$ decaying almost entirely to lower laser level $|1\rangle$ with a lifetime of 10 ms. Consider the laser transition to be inhomogeneously broadened with a Gaussian lineshape and a linewidth of 5 THz.

a) Briefly describe with the help of a diagram what is meant by *inhomogeneously broadened*.

b) Determine an expression for the peak stimulated emission cross-section of the lasing transition, $\sigma_{21}(v_{12})$, in terms of its linewidth Δv and the spontaneous decay rate of the transition, A_{21} .

c) What is the value of $\sigma_{21}(v_{12})$? [To allow for the effect of the refractive index of the fiber, replace *c* in this expression by c/n].