Final Exam

April 19th, 2005

Allowed: Time – three hours 2 sides of 8¹/₂×11" paper containing your notes Formula sheet (given) Calculator

Each question carries equal marks. Answer three questions from the four listed.

1. a) The relativistic Lagrangian for a particle with charge q and position vector r interacting with an electromagnetic field is given by:

$$L = -mc^2 \sqrt{1 - \overset{a}{\mathbf{A}}^2 / c^2} + q \overset{a}{\mathbf{A}} \cdot \mathbf{A} - qV,$$

where V(x,y,z,t) and A(x,y,z,t) are the usual scalar and vector potentials.

- i) Consider only the x-component of A and find $\frac{dA_x}{dt}$ in terms of $\frac{\partial A_x}{\partial x}, \frac{\partial A_x}{\partial y}, \frac{\partial A_x}{\partial z}$ and $\frac{\partial A_x}{\partial t}$
- ii) Show that Lagrange's equation $\frac{\partial L}{\partial x} \frac{d}{dt} \frac{\partial L}{\partial k} = 0$ gives the *x*-component of the Lorentz force equation.

b) Consider plane, monochromatic, polarized light travelling along the *z*-axis.

i) Explain how an arbitrary state of polarized light can be created by the addition of components that are linearly-polarized along the *x* and *y* axes.

ii) Write down expressions for the electric fields of oppositely circularly-polarized plane waves and define one of them to be "right" and the other "left".

iii) Consider the propagation of an electromagnetic wave through a medium whose index of refraction depends upon the state of polarization, such that

$$n_{\pm} = \pm$$

where and are real and positive, and the plus and minus signs refer to "right" and "left" circularlypolarized plane waves respectively. Show that a linearly-polarized plane wave incident on such a medium at z = 0 has its plane of polarization rotated as it travels through the medium and find the first value of z at which the plane of polarization returns to that at which it entered the medium. 2. A hollow box with perfectly conducting walls has inside dimensions a = 2 cm, b = 3 cm and d = 1 cm (in the *x*, *y* and *z* directions, respectively).

a) Use Maxwell's equations to deduce the boundary conditions for the electromagnetic field inside this box.
b) Write down the general form of the electric and magnetic fields for the *mn*lth mode inside this box, and derive an expression for the angular frequency of this mode.

c) If we define the wavelength, λ , by $=\frac{2-c}{c}$, how many modes of wavelength λ in the range

 $\frac{4}{\sqrt{5}} \leq \frac{8}{\sqrt{13}}$ cm are there? What are they, and what are their wavelengths?

d) Make a rough (order-of-magnitude) estimate of how many modes are in the range $0.01 \le \le 0.011$ cm.

3. a) Starting with the four Maxwell's equations, derive Maxwell's equations in potential form in an arbitrary gauge.

b) Use the Lorentz gauge to simplify these equations. Write down the solutions $V(\mathbf{r},t)$ and $A(\mathbf{r},t)$ for the **specific** case of a *point* charge. What name do we give to these potentials? Explain fully each term present and, where appropriate, what it physically represents.

c) A point charge of charge q moves in a circle about the origin at constant angular velocity in the xy plane (with this vector lying along $+\hat{z}$). At t = 0 the particle is at position (a, a). Find the scalar and vector potentials at any point on the z-axis at time t.

d) Can you derive the electric and magnetic fields from this result?

4. Two observers *S* and *S'* (with *S'* travelling at speed *v* with respect to S along their common \hat{x} -direction) each measure the linear momentum of a particle, the wavevector of a photon and the electric and magnetic fields in their laboratories. Suppose that *S* measures a linear momentum of $p^{\mu} = (E/c, p, 0, 0)$, a (4-vector) wavevector of $k^{\mu} = (/c, k^x, k^y, 0)$ and a field strength tensor of:

F ^µ	=	(0	0	0	0)
		0	0	В	0
		0	-B	0	0
		0	0	0	0

a) Define what is meant by a 4-vector and by a field strength tensor.

b) Determine what S' measures for the linear momentum of the particle, the wavevector of the photon and the field strength tensor.

c) Calculate $p^{\mu}k_{\mu}$ and $F^{\mu}F_{\mu}$ in each frame. What invariants have you discovered?