Final Exam: Tuesday Apr 7, 2020

(Delivered online in 2020, with slightly different format, due to COVID-19 pandemic) Allowed: Formula sheet (given), calculator, 2 hours

Answer questions 1-12 on rough paper. Take your time. Then email answers to rayfshiell@trentu.ca.

For all except the first question:

If correct answer in one = 4 points; correct answer in two = 2 points; correct answer in three = 0.5 points

1) [no marks for this question] Which of the following are the <u>first two</u> digits of your six-digit <u>student</u> <u>number</u> (dropping any leading zeros)?

A. 64 **B.** 63 **C.** 62 **D.** 61 **E.** 60 **F.** 59

2) Suppose a multiparticle system has total orbital angular quantum number, ℓ_T , given by the <u>first</u> digit of your student number, and total spin angular quantum number, s_T , given by the <u>second</u> digit of your student number (excluding any leading zeros). How many <u>distinct values</u> of j_T result from adding these two angular momenta together?

A. 1 B. 3 C. 5 D. 7 E. 9 F. 1	C. 5 D. 7 E. 9 F.	B. 3 C. 5 D.	A. 1
---	-------------------	-----------------------------------	-------------

Trent: PHYS 2620H – Atomic, Molecular and Nuclear Physics: 2019-2020

Qu's 3 – **6:** Consider the electronic state of atomic hydrogen, neglecting spin, with $(n, \ell, m_{\ell}) = (2,1,0)$. **3)** With the help of the formula sheet, which of the following is the correct mathematical form of the spatial wave function, $\psi(r, \theta, \phi)$ for this state, neglecting any normalization constant?

$$\mathbf{A} \cdot \left(6 - \frac{r}{a_0}\right) r e^{-r/3a_0} \cos \theta \quad \mathbf{B} \cdot r e^{-r/2a_0} \cos \theta \quad \mathbf{C} \cdot \left(2 - \frac{r}{a_0}\right) e^{-r/2a_0} \quad \mathbf{D} \cdot \left(6 - \frac{r}{a_0}\right) r e^{-r/3a_0} \sin \theta e^{i\phi} \quad \mathbf{E} \cdot r e^{-r/2a_0} \sin \theta e^{i\phi}$$

4) For this state what is the eigenvalue of the total energy operator, \hat{H} ? (N.B. You may either do a long eigenvalue calculation, or instead a quicker calculation with the appropriate formula from the formula sheet).

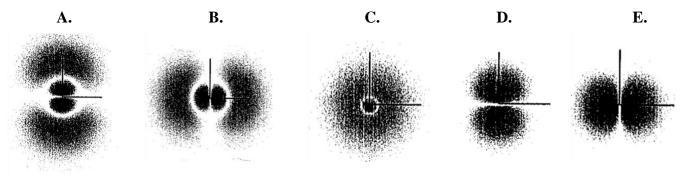
A. -2.41×10^{-19} J **B.** -5.42×10^{-19} J **C.** -2.17×10^{-18} J **D.** $\sqrt{2}\hbar$ **E.** $1\hbar$

5) Which of the following experimental measurements on many atoms in this state will theoretically give zero uncertainty from these experiments?

- A. Orbital angular momentum magnitude and orbital angular momentum projection on z-axis only
- B. Orbital angular momentum magnitude only
- C. Total energy and orbital angular momentum magnitude only
- **D.** Total energy, orbital angular momentum magnitude, orbital angular momentum projection on *z*-axis

E. Total energy and orbital angular momentum projection on *z*-axis only

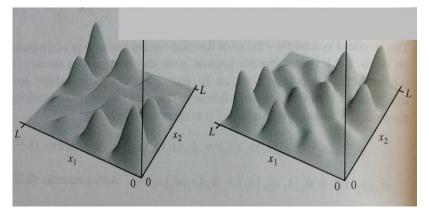
6) Which of the following probability density plots from Harris (i.e. density plots of $|\psi(r, \theta, \phi)|^2$) best resembles this state? (here the *z*-axis is in the plane of, and points up, the page).



Trent: PHYS 2620H - Atomic, Molecular and Nuclear Physics: 2019-2020

Qu's 7 – 8: Two spinless identical particles in an infinite well of length L occupy the n'=3 and n=4energy states. The two physically possible wavefunctions are called 'symmetric' and 'antisymmetric' wavefunctions, with labels $\psi_s(x_1, x_2)$ and $\psi_A(x_1, x_2)$, respectively.

7) Looking at the plots of corresponding probability density below, what, in each case, is plotted?



A.
$$\begin{array}{l} \text{Left} = \left|\psi_{A}(x_{1}, x_{2})\right|^{2} \\ \text{Right} = \left|\psi_{S}(x_{1}, x_{2})\right|^{2} \end{array} \end{array}$$
B.
$$\begin{array}{l} \text{Left} = \psi_{S}(x_{1}, x_{2}) \\ \text{Right} = \psi_{A}(x_{1}, x_{2}) \end{array}$$
C.
$$\begin{array}{l} \text{Left} = \psi_{A}(x_{1}, x_{2}) \\ \text{Right} = \psi_{S}(x_{1}, x_{2}) \end{array}$$
D.
$$\begin{array}{l} \text{Left} = \left|\psi_{S}(x_{1}, x_{2})\right|^{2} \\ \text{Right} = \left|\psi_{A}(x_{1}, x_{2})\right|^{2} \end{array}$$

8) Which of the following <u>wavefunctions</u> corresponds to each of these plots?

Left plot $\Rightarrow \frac{\sqrt{2}}{L} \left(\sin\left(\frac{3\pi x_1}{L}\right) \sin\left(\frac{4\pi x_2}{L}\right) + \sin\left(\frac{4\pi x_1}{L}\right) \sin\left(\frac{3\pi x_2}{L}\right) \right)$

Right plot $\Rightarrow \frac{\sqrt{2}}{L} \left(\sin\left(\frac{3\pi x_1}{L}\right) \sin\left(\frac{4\pi x_2}{L}\right) - \sin\left(\frac{4\pi x_1}{L}\right) \sin\left(\frac{3\pi x_2}{L}\right) \right)$

Left plot $\Rightarrow \frac{\sqrt{2}}{L} \left(\sin\left(\frac{3\pi x_1}{L}\right) \sin\left(\frac{4\pi x_2}{L}\right) - \sin\left(\frac{4\pi x_1}{L}\right) \sin\left(\frac{3\pi x_2}{L}\right) \right)$

Right plot $\Rightarrow \frac{\sqrt{2}}{L} \left(\sin\left(\frac{3\pi x_1}{L}\right) \sin\left(\frac{4\pi x_2}{L}\right) + \sin\left(\frac{4\pi x_1}{L}\right) \sin\left(\frac{3\pi x_2}{L}\right) \right)$

A.

C.

Left plot
$$\Rightarrow \frac{\sqrt{2}}{L} \left(\sin\left(\frac{3\pi x_1}{L}\right) \sin\left(\frac{4\pi x_2}{L}\right) + \sin\left(\frac{4\pi x_2}{L}\right) \sin\left(\frac{3\pi x_1}{L}\right) \right)$$

Right plot $\Rightarrow \frac{\sqrt{2}}{L} \left(\sin\left(\frac{3\pi x_1}{L}\right) \sin\left(\frac{4\pi x_2}{L}\right) - \sin\left(\frac{4\pi x_2}{L}\right) \sin\left(\frac{3\pi x_1}{L}\right) \right)$

D.
Left plot
$$\Rightarrow \frac{\sqrt{2}}{L} \left(\sin\left(\frac{3\pi x_1}{L}\right) \sin\left(\frac{4\pi x_2}{L}\right) - \sin\left(\frac{4\pi x_2}{L}\right) \sin\left(\frac{3\pi x_1}{L}\right) \right)$$

Right plot $\Rightarrow \frac{\sqrt{2}}{L} \left(\sin\left(\frac{3\pi x_1}{L}\right) \sin\left(\frac{4\pi x_2}{L}\right) + \sin\left(\frac{4\pi x_2}{L}\right) \sin\left(\frac{3\pi x_1}{L}\right) \right)$

Trent: PHYS 2620H - Atomic, Molecular and Nuclear Physics: 2019-2020

Qu's 9 – 10: Suppose a homonuclear diatomic molecule has a spring constant of 45 Nm⁻¹, and is composed from two atoms, each with mass number *A*, lying along the *x*-axis. Here, *A* is given by the <u>last</u> two digits of your <u>student number</u> [e.g. if your student number were 765432 then *A* would be 32].

9) Which of the following statements is most accurate about the $\sigma 2p$ orbital for this molecule?

A. If two electrons are placed into this molecular orbital then they must have the same spin value, m_s .

B. This molecular orbital can hold up to four electrons.

C. This molecular orbital stems from 2p atomic orbitals, and so can hold up to $2 \times 3 = 6$ electrons.

D. This molecular orbital can be formed from the summation of one $2p_x$ atomic orbital from each atom, where these atomic orbitals lie perpendicular to the internuclear axis.

E. This molecular orbital can be formed from the summation of one $2p_x$ atomic orbital from each atom, where each of these atomic orbitals lie along the internuclear axis.

10) In which energy region lies the energy spacing, ΔE_{vib} , between the lowest vibrational state (labelled by n = 0) and the first-excited vibrational state (labelled by n = 1)?

A. $\Delta E_{\rm vib} < 20 {\rm meV}$	B. 20 meV $< \Delta E_{\rm vib} < 40$ meV	C. 40 meV $< \Delta E_{\rm vib} < 60$ meV
D. 60	$meV < \Delta E_{vib} < 80 meV$	E. $\Delta E_{\rm vib} > 80 {\rm meV}$

Qu's 11 – 12) The ordering of the first few orbitals within the nucleus derived from the shell model is as follows: $1s_{1/2}$, $1p_{3/2}$, $1p_{1/2}$, $1d_{5/2}$, $2s_{1/2}$, $1d_{3/2}$, $1f_{7/2}$.

11) Nuclei with so-called *magic numbers* of neutrons or protons have high levels of stability associated with closed subshells. Given this, which value below is a possible magic number for protons **or** neutrons?

A. 4 B. 8 C. 10 D. 12	E. 18
---	--------------

12) What is the total angular momentum quantum number of the ${}^{17}_{8}$ O nucleus (called its nuclear *spin*)?

A. $\frac{1}{2}$	B. $\frac{3}{2}$	C. $\frac{5}{2}$	D. $\frac{7}{2}$	E. $\frac{9}{2}$
2	2	2	2	Z