Final Exam: Thursday April 15, 2010

Allowed: Time – three hours Formula sheet (given) Calculator

Each question carries equal marks. Answer three out of the four questions.

For each problem <u>briefly explain</u> the equations you choose to use – simply writing down a set of equations from your formula sheet will not earn any marks.

Don't cram your answers into too small a space - try to spread out your answers.

1. A particle of mass *m* has a potential energy given by $V(x) = \frac{1}{2}kx^2$. It is in the first excited energy state, with wavefunction:

 $\psi(x) = A x \exp\left(-\left(\frac{mk}{\hbar^2}\right)^{\frac{1}{2}} \frac{x^2}{2}\right)$

where A is a normalization constant.

a) Calculate in terms of *A* the expectation values of *x*, *p* and p^2 in this state. (Hint: Use symmetry where possible and explain why).

b) Write down a formula representing the vibrational energies of a HF molecule in terms of an effective spring constant, k, and the masses $m_{\rm H}$, $m_{\rm F}$ of the constituent atoms.

c) Given that the wavelength of the light emitted by HF in a transition from $v = 1 \rightarrow v = 0$ state is 2.4 µm, find the value of *k* that characterizes the H – F bond. (The atomic mass of F is 19 amu).

2.a) Define what is meant by a *transition dipole moment* for a transition from state ψ_2 to state ψ_1 . b) Calculate the *z*-component of the transition dipole moment between the 2p₀ and the 1s state in the hydrogen atom (neglect spin), and also determine the wavelength of this transition. c) From this value calculate Einstein's B₂₁ (with units given by m³/Js²), and A₂₁ coefficients.

d) What is the spontaneous emission lifetime of the $2p_0$ state in hydrogen?

3. a) Consider putting two electrons into an infinite well of width *L*, with one electron in the first excited state, and the other in the second excited state. What *exchange symmetry* must be satisfied by these electrons? Write down an acceptable wavefunction for this state (you can treat the normalization constant as a parameter, *A*, if you wish).

b) The electronic configuration of H₂ in its lowest energy state is $1\sigma_g^2$. Sketch the form of the molecular orbital $1\sigma_g$ and explain how it can be formed from a linear combination of atomic orbitals. The spin part of the electronic wavefunction for this state is given by

$$\chi = \frac{1}{\sqrt{2}} \left(\uparrow_1 \downarrow_2 - \downarrow_1 \uparrow_2 \right).$$

State whether χ is a symmetric or antisymmetric wavefunction under exchange of the two electrons and show this explicitly. Given this, what can be said about the exchange symmetry of the *spatial* part of the wavefunction?

4. a) Given the following table of atomic masses:

Element	Symbol	Atomic mass, u
neutron	n	1.008665
hydrogen	¹ H	1.007825
lithium	⁷ Li	7.016003

Determine the total binding energy in MeV, and also the binding energy per nucleon, of $\frac{7}{3}$ Li.

b) Sketch the approximate form of the curve of binding energy per nucleon versus mass number, and put approximate numerical scales on each axis.

c) The semi-empirical mass formula, based on the liquid-drop model of the nucleus, is given below. Discuss the origin of each term in the formula, and explain why each specific term is either positive or negative.

$$M_{nucleus} = Zm_p + Nm_n - c_1A + c_2A^{2/3} + c_3\frac{Z(Z-1)}{A^{1/3}} + c_4\frac{(Z-A/2)^2}{A}$$