Final Exam: Sunday Apr 16, 2023 Name:

Allowed: Formula sheet (given), calculator, $\mathbf{2}^{1 ⁄ 2}$ hours

PART 1 - answer questions 1-7 in your exam booklet and then use your scratch card:
One scratch $=\mathbf{1 0 0 \%}$; two scratches $\mathbf{5 0 \%}$; three scratches $\mathbf{3 3 \%}$; four scratches $\mathbf{2 5 \%}$ (part 1 total is $\mathbf{4 0 \%}$) PART 2 - answer questions $\mathbf{8}-\mathbf{1 0}$ in the exam booklet provided (each question here is worth $\underline{\mathbf{2 0 \%}}$)

Qu's 1-3) Consider a beam of particles of mass m and energy E travelling from $x<0$, where $U=0$, towards a potential energy step with height U_{0} located at $x=0$, and with $E>U_{0}$.
Harris examines this problem, and adopts a form for the wave function for each particle in each region given by

$$
\psi_{x<0}(x)=A e^{i k x}+B e^{-i k x} \quad \text { and } \quad \psi_{x>0}(x)=C e^{i k^{\prime} x}
$$

The following relationships are then found to hold between A, B and C :

$$
B=\frac{k-k^{\prime}}{k+k^{\prime}} \quad \text { and } \quad C=\frac{2 k}{k+k^{\prime}}
$$

1) Which of the following are the correct expressions for k and k^{\prime} ?
A. $k=\sqrt{\frac{2 m E}{\hbar^{2}}} ; k^{\prime}=\sqrt{\frac{2 m\left(E-U_{0}\right)}{\hbar^{2}}}$
B. $k=\sqrt{\frac{2 m E}{\hbar^{2}}} ; k^{\prime}=\sqrt{\frac{2 m\left(U_{0}-E\right)}{\hbar^{2}}}$
C. $k=\sqrt{\frac{2 m\left(E-U_{0}\right)}{\hbar^{2}}} ; k^{\prime}=\sqrt{\frac{2 m\left(U_{0}-E\right)}{\hbar^{2}}}$
D. $k=\sqrt{\frac{2 m\left(E+U_{0}\right)}{\hbar^{2}}} ; k^{\prime}=\sqrt{\frac{2 m\left(E-U_{0}\right)}{\hbar^{2}}}$
E. $k=\sqrt{\frac{2 m E}{\hbar^{2}}} ; k^{\prime}=\sqrt{\frac{2 m\left(E+U_{0}\right)}{\hbar^{2}}}$
2) Suppose that $U_{0}=-3 E$ (and so this is in fact a potential energy drop, for which Harris' equations still hold), and for ease we shall let A adopt the value 1 . Which of the following are then viable forms of the wavefunction in each region?
A. $\psi_{x<0}(x)=e^{i k x}-\frac{1}{3} e^{-i k x}$
B. $\psi_{x<0}(x)=e^{i k x}+\frac{1}{3} e^{-i k x}$
C. $\begin{aligned} & \psi_{x<0}(x)=e^{i k x}-\frac{1}{3} e^{-i k x} \\ & \psi_{x>0}(x)=\frac{2}{3} e^{i k^{\prime} x}\end{aligned}$
D. $\psi_{x<0}(x)=e^{i k x}-\frac{2}{3} e^{-i k x}$
E. $\psi_{x<0}(x)=e^{i k x}+\frac{2}{3} e^{-i k x}$
$\psi_{x>0}(x)=\frac{2}{3} e^{i k^{\prime} x}$
$\psi_{x>0}(x)=\frac{2}{3} e^{i k^{\prime} x}$
3) What fraction of incident particles reflect from this potential energy drop?
A. $R=0.45$
B. $R=0.25$
C. $R=0.11$
D. $R=0.33$
E. $R=0.66$
4) The one-particle orbital angular momentum operator, $\hat{\mathbf{L}}$, is defined in terms of its constituent operators: $\widehat{\mathbf{L}}=\hat{\mathbf{r}} \times \hat{\mathbf{p}}$. In three dimensions how are $\hat{\mathbf{r}}$ and $\hat{\mathbf{p}}$ defined?
A. $\hat{\mathbf{r}}$ is x and $\hat{\mathbf{p}}$ is $-i \frac{\partial}{\partial x}$
B. $\hat{\mathbf{r}}$ is the vector (x, y) and $\hat{\mathbf{p}}$ is the vector $-i \hbar\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$
C. $\hat{\mathbf{r}}$ is the vector (x, y) and $\hat{\mathbf{p}}$ is the vector $i \hbar\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$
D. $\hat{\mathbf{r}}$ is the vector (x, y, z) and $\hat{\mathbf{p}}$ is the vector $i \hbar\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$
E. $\hat{\mathbf{r}}$ is the vector (x, y, z) and $\hat{\mathbf{p}}$ is the vector $-i \hbar\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$
5) If an electron is in a p state, what are the possible values of L_{z}, in units of \hbar ?
A. $-3,-2,-1,0,+1,+2,+3$
B. $-1,0,+1$
C. $-2,-1,0$
D. $-2,-1,0,+1,+2$
E. $0,+1,+2$
6) For an electron in a p state what is the smallest possible angle between its orbital angular momentum vector and the z-axis?
A. 45°
B. 30°
C. 23°
D. 18°
E. 12°
7) Consider two different possible wave functions for two electrons in an infinite well, with each wave function composed of (different) spatial and spin parts:

$$
\psi_{a}(1,2)=\phi_{a}\left(\vec{r}_{1}, \vec{r}_{2}\right) \uparrow_{1} \uparrow_{2} \quad \psi_{b}(1,2)=\phi_{b}\left(\vec{r}_{1}, \vec{r}_{2}\right) \frac{1}{\sqrt{2}}\left(\uparrow_{1} \downarrow 2-\downarrow_{1} \uparrow_{2}\right)
$$

Which of the following statements must be true about the exchange symmetry of the spatial and spin parts of these wave functions?
A. the spin part of ψ_{a} is antisymmetric and the spatial part of ψ_{a} is symmetric
B. the spin part of ψ_{b} is antisymmetric and the spatial part of ψ_{b} is symmetric
C. the spin part of ψ_{a} is symmetric and the spatial part of ψ_{b} is asymmetric (has no symmetry)
D. the spatial part of ψ_{a} is symmetric and the spin part of ψ_{b} is antisymmetric
E. the spin part of ψ_{a} is symmetric and the spatial part of ψ_{b} is antisymmetric

PART II - answer all three questions in exam booklet provided

8. A particle of mass m experiences a potential energy given by $\frac{1}{2} \kappa x^{2}$. It occupies the first excited energy state, with wavefunction:

$$
\psi(x)=A x e^{-\left(\frac{m \kappa}{\hbar^{2}}\right)^{\frac{1}{2}} \frac{x^{2}}{2}}
$$

where A is a normalization constant.
a) Evaluate the expectation value of x and the expectation value of p in this state. (Hint: Use symmetry if possible and explain why this is of help).
b) Find, but do not calculate, the integral (written in terms of x) that gives the expectation value of p^{2} in this state.
9. Consider the 3d electron in a hydrogen atom.
a) Carefully sketch, with reasoning and labelled axes with units, the radial probability density, $P(r)$, for this electron. Demonstrate mathematically that the peak of this function occurs at $r=9 \mathrm{a}_{0}$, and explain the significance of this.
b) Estimate the probability that the electron may be found within a total range of distance of $\Delta r=0.03 \mathrm{a}_{0}$ in the region of $r \approx 9 \mathrm{a}_{0}$.
10. Two identical particles are in an infinite well and together they occupy both the ground state and the first excited state.
a) Write down the spatial wave functions of these two particles that are: (i) symmetric, and (ii) antisymmetric with respect to particle exchange (neglect any spin part of this wavefunction), taking the normalization constant of these wave functions to be A.
b) Write down but do not calculate the integral (which is composed of three added/subtracted parts), that gives the probability of one particle lying between $x_{a} \rightarrow x_{b}$ and the other particle lying between $x_{c} \rightarrow x_{d}$. If these two regions overlap substantially which wave function from part (a) will give the greater probability of finding the particles in these two regions, and why?
$\left[\right.$ Note that the spatial wave function for one particle in the n-th state of an infinite well is $\left.\psi_{n}(x)=\sqrt{\frac{2}{L}} \sin \frac{n \pi x}{L}\right]$

